85 lines
2.7 KiB
Python
85 lines
2.7 KiB
Python
|
import numpy as np
|
||
|
import cv2
|
||
|
from matplotlib import pyplot as plt
|
||
|
import os
|
||
|
|
||
|
print('-----')
|
||
|
dirname = os.path.dirname(__file__)
|
||
|
filename = os.path.join(dirname,'data/legos3.jpg')
|
||
|
print(os.path.exists(filename))
|
||
|
img = cv2.imread(filename)
|
||
|
b,g,r = cv2.split(img)
|
||
|
rgb_img = cv2.merge([r,g,b])
|
||
|
|
||
|
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
|
||
|
|
||
|
# smooth = cv2.bilateralFilter(gray,5,150,150)
|
||
|
# smooth = cv2.medianBlur(gray,5)
|
||
|
smooth = cv2.GaussianBlur(gray,(5,5),0)
|
||
|
|
||
|
# sobelx = cv2.Sobel(smooth,cv2.CV_8UC1,1,0,ksize=5)
|
||
|
# sobely = cv2.Sobel(smooth,cv2.CV_8UC1,0,1,ksize=5)
|
||
|
|
||
|
# ret, thresh = cv2.threshold(smooth,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU)
|
||
|
# thresh = cv2.adaptiveThreshold(smooth,255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C,cv2.THRESH_BINARY,21,5)
|
||
|
threshLevel = np.mean(smooth)*1.6
|
||
|
ret, thresh = cv2.threshold(smooth,threshLevel,255,cv2.THRESH_BINARY)
|
||
|
|
||
|
#thresh = cv2.Canny(smooth,200,200)
|
||
|
|
||
|
# noise removal
|
||
|
kernel = np.ones((3,3),np.uint8)
|
||
|
#thresh = cv2.dilate(thresh,kernel,iterations=1)
|
||
|
opening = cv2.morphologyEx(thresh,cv2.MORPH_OPEN,kernel, iterations = 5)
|
||
|
# closing = cv2.morphologyEx(thresh,cv2.MORPH_CLOSE,kernel, iterations = 2)
|
||
|
|
||
|
# sure background area
|
||
|
sure_bg = cv2.dilate(opening,kernel,iterations=3)
|
||
|
|
||
|
# Finding sure foreground area
|
||
|
dist_transform = cv2.distanceTransform(sure_bg,cv2.DIST_L2,3)
|
||
|
|
||
|
# Threshold
|
||
|
ret, sure_fg = cv2.threshold(dist_transform,0.1*dist_transform.max(),255,0)
|
||
|
|
||
|
# Finding unknown region
|
||
|
sure_fg = np.uint8(sure_fg)
|
||
|
unknown = cv2.subtract(sure_bg,sure_fg)
|
||
|
|
||
|
# Marker labelling
|
||
|
ret, markers = cv2.connectedComponents(sure_fg)
|
||
|
|
||
|
# Add one to all labels so that sure background is not 0, but 1
|
||
|
markers = markers+1
|
||
|
|
||
|
# Now, mark the region of unknown with zero
|
||
|
markers[unknown==255] = 0
|
||
|
|
||
|
markers = cv2.watershed(img,markers)
|
||
|
img[markers == -1] = [255,0,0]
|
||
|
|
||
|
plt.subplot(421),plt.imshow(rgb_img)
|
||
|
plt.title('Input Image'), plt.xticks([]), plt.yticks([])
|
||
|
# plt.subplot(422),plt.imshow(thresh, 'gray')
|
||
|
# plt.title("Otsu's binary threshold"), plt.xticks([]), plt.yticks([])
|
||
|
plt.subplot(422),plt.imshow(thresh, 'gray')
|
||
|
plt.title("smoothing"), plt.xticks([]), plt.yticks([])
|
||
|
|
||
|
plt.subplot(423),plt.imshow(opening, 'gray')
|
||
|
plt.title("morphologyEx:Closing:2x2"), plt.xticks([]), plt.yticks([])
|
||
|
plt.subplot(424),plt.imshow(sure_bg, 'gray')
|
||
|
plt.title("Dilation"), plt.xticks([]), plt.yticks([])
|
||
|
|
||
|
plt.subplot(425),plt.imshow(dist_transform, 'gray')
|
||
|
plt.title("Distance Transform"), plt.xticks([]), plt.yticks([])
|
||
|
plt.subplot(426),plt.imshow(sure_fg, 'gray')
|
||
|
plt.title("Thresholding"), plt.xticks([]), plt.yticks([])
|
||
|
|
||
|
plt.subplot(427),plt.imshow(unknown, 'gray')
|
||
|
plt.title("Unknown"), plt.xticks([]), plt.yticks([])
|
||
|
|
||
|
plt.subplot(428),plt.imshow(img, 'gray')
|
||
|
plt.title("Result from Watershed"), plt.xticks([]), plt.yticks([])
|
||
|
|
||
|
plt.tight_layout()
|
||
|
plt.show()
|