import numpy as np import cv2 from matplotlib import pyplot as plt import os print('-----') dirname = os.path.dirname(__file__) filename = os.path.join(dirname,'data/legos3.jpg') print(os.path.exists(filename)) img = cv2.imread(filename) b,g,r = cv2.split(img) rgb_img = cv2.merge([r,g,b]) gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) # smooth = cv2.bilateralFilter(gray,5,150,150) # smooth = cv2.medianBlur(gray,5) smooth = cv2.GaussianBlur(gray,(5,5),0) # sobelx = cv2.Sobel(smooth,cv2.CV_8UC1,1,0,ksize=5) # sobely = cv2.Sobel(smooth,cv2.CV_8UC1,0,1,ksize=5) # ret, thresh = cv2.threshold(smooth,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU) # thresh = cv2.adaptiveThreshold(smooth,255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C,cv2.THRESH_BINARY,21,5) threshLevel = np.mean(smooth)*1.6 ret, thresh = cv2.threshold(smooth,threshLevel,255,cv2.THRESH_BINARY) #thresh = cv2.Canny(smooth,200,200) # noise removal kernel = np.ones((3,3),np.uint8) #thresh = cv2.dilate(thresh,kernel,iterations=1) opening = cv2.morphologyEx(thresh,cv2.MORPH_OPEN,kernel, iterations = 5) # closing = cv2.morphologyEx(thresh,cv2.MORPH_CLOSE,kernel, iterations = 2) # sure background area sure_bg = cv2.dilate(opening,kernel,iterations=3) # Finding sure foreground area dist_transform = cv2.distanceTransform(sure_bg,cv2.DIST_L2,3) # Threshold ret, sure_fg = cv2.threshold(dist_transform,0.1*dist_transform.max(),255,0) # Finding unknown region sure_fg = np.uint8(sure_fg) unknown = cv2.subtract(sure_bg,sure_fg) # Marker labelling ret, markers = cv2.connectedComponents(sure_fg) # Add one to all labels so that sure background is not 0, but 1 markers = markers+1 # Now, mark the region of unknown with zero markers[unknown==255] = 0 markers = cv2.watershed(img,markers) img[markers == -1] = [255,0,0] plt.subplot(421),plt.imshow(rgb_img) plt.title('Input Image'), plt.xticks([]), plt.yticks([]) # plt.subplot(422),plt.imshow(thresh, 'gray') # plt.title("Otsu's binary threshold"), plt.xticks([]), plt.yticks([]) plt.subplot(422),plt.imshow(thresh, 'gray') plt.title("smoothing"), plt.xticks([]), plt.yticks([]) plt.subplot(423),plt.imshow(opening, 'gray') plt.title("morphologyEx:Closing:2x2"), plt.xticks([]), plt.yticks([]) plt.subplot(424),plt.imshow(sure_bg, 'gray') plt.title("Dilation"), plt.xticks([]), plt.yticks([]) plt.subplot(425),plt.imshow(dist_transform, 'gray') plt.title("Distance Transform"), plt.xticks([]), plt.yticks([]) plt.subplot(426),plt.imshow(sure_fg, 'gray') plt.title("Thresholding"), plt.xticks([]), plt.yticks([]) plt.subplot(427),plt.imshow(unknown, 'gray') plt.title("Unknown"), plt.xticks([]), plt.yticks([]) plt.subplot(428),plt.imshow(img, 'gray') plt.title("Result from Watershed"), plt.xticks([]), plt.yticks([]) plt.tight_layout() plt.show()