Cleaned up, tried out some stuff with clustering; Pattern variable probably has to go
This commit is contained in:
parent
b3bc81ccbc
commit
72d2b6b799
@ -247,14 +247,14 @@ dattree$AvDurItem <- aggregate(duration ~ case, tmp, mean)$duration
|
||||
|
||||
rm(tmp)
|
||||
|
||||
plot(dattree)
|
||||
|
||||
|
||||
|
||||
|
||||
par(mfrow = c(3,3))
|
||||
par(mfrow = c(3,4))
|
||||
hist(dattree$Duration, breaks = 50, main = "")
|
||||
hist(dattree$SearchInfo, breaks = 50, main = "")
|
||||
hist(dattree$AvDurItem, breaks = 50, main = "")
|
||||
hist(dattree$PropItems, breaks = 50, main = "")
|
||||
hist(dattree$PropTopic, breaks = 50, main = "")
|
||||
hist(dattree$PropPopup, breaks = 50, main = "")
|
||||
hist(dattree$PropMoves, breaks = 50, main = "")
|
||||
hist(dattree$PathLinearity, breaks = 50, main = "")
|
||||
hist(dattree$Singularity, breaks = 50, main = "")
|
||||
@ -286,13 +286,14 @@ write.table(dattree,
|
||||
|
||||
df <- dattree[, c("AvDurItem", "PropItems", "PropTopic", "PropPopup", "PropMoves")]
|
||||
#df <- dattree[, c("AvDurItem", "PropItems", "SearchInfo", "PropMoves")]
|
||||
# TODO: With or without duration? Why is it relevant?
|
||||
|
||||
df$Scholar <- ifelse(dattree$Pattern == "Scholar", 1, 0)
|
||||
df$Star <- ifelse(dattree$Pattern == "Star", 1, 0)
|
||||
df$Dispersion <- ifelse(dattree$Pattern == "Dispersion", 1, 0)
|
||||
|
||||
# scale Duration and min/max SearchInfo
|
||||
df$AvDurItem <- as.numeric(scale(df$AvDurItem))
|
||||
#df$AvDurItem <- as.numeric(scale(df$AvDurItem))
|
||||
df$AvDurItem <- (df$AvDurItem - min(df$AvDurItem, na.rm = TRUE)) /
|
||||
(max(df$AvDurItem, na.rm = TRUE) - min(df$AvDurItem, na.rm = TRUE))
|
||||
#df$SearchInfo <- (df$SearchInfo - min(df$SearchInfo)) /
|
||||
# (max(df$SearchInfo) - min(df$SearchInfo))
|
||||
df$PropTopic <- (df$PropTopic - min(df$PropTopic, na.rm = TRUE)) /
|
||||
@ -300,6 +301,33 @@ df$PropTopic <- (df$PropTopic - min(df$PropTopic, na.rm = TRUE)) /
|
||||
df$PropPopup <- (df$PropPopup - min(df$PropPopup, na.rm = TRUE)) /
|
||||
(max(df$PropPopup, na.rm = TRUE) - min(df$PropPopup, na.rm = TRUE))
|
||||
|
||||
|
||||
# "Flatten" with PCA
|
||||
pc <- prcomp(df)
|
||||
coor_2d <- as.data.frame(pc$x[, c(1, 2)])
|
||||
coor_3d <- as.data.frame(pc$x[, c(1, 2, 3)])
|
||||
|
||||
#--------------- (2.1) K-Means clustering ---------------
|
||||
|
||||
mycols <- c("#78004B", "#FF6900", "#3CB4DC", "#91C86E")
|
||||
|
||||
k1 <- kmeans(df, 4)
|
||||
|
||||
grp_km <- k1$cluster
|
||||
table(grp_km)
|
||||
|
||||
fviz_cluster(list(data = df, cluster = grp_km),
|
||||
palette = mycols,
|
||||
ellipse.type = "convex",
|
||||
show.clust.cent = FALSE,
|
||||
ggtheme = theme_bw())
|
||||
|
||||
plot(coor_2d, col = mycols[grp_km])
|
||||
|
||||
rgl::plot3d(coor_3d, col = mycols[grp_km])
|
||||
|
||||
#--------------- (2.2) Hierarchical clustering ---------------
|
||||
|
||||
mat <- dist(df)
|
||||
# TODO: Do I need to scale all variables?
|
||||
|
||||
@ -326,7 +354,7 @@ cor(mat, c5)
|
||||
# https://en.wikipedia.org/wiki/Cophenetic_correlation
|
||||
# https://stats.stackexchange.com/questions/195446/choosing-the-right-linkage-method-for-hierarchical-clustering
|
||||
|
||||
hc <- h4
|
||||
hc <- h1
|
||||
|
||||
# Something like a scree plot (??)
|
||||
plot(rev(hc$height)[1:100], type = "b", pch = 16, cex = .5)
|
||||
@ -338,50 +366,46 @@ grp_hclust <- cutree(hc, k = k)
|
||||
table(grp_hclust)
|
||||
|
||||
fviz_cluster(list(data = df, cluster = grp_hclust),
|
||||
palette = c("#78004B", "#FF6900", "#3CB4DC", "#91C86E", "black"),
|
||||
palette = mycols,
|
||||
ellipse.type = "convex",
|
||||
show.clust.cent = FALSE,
|
||||
ggtheme = theme_bw())
|
||||
|
||||
plot(coor_2d, col = mycols[grp_hclust])
|
||||
rgl::plot3d(coor_3d, col = mycols[grp_hclust])
|
||||
|
||||
table(dattree[grp_hclust == 1, "Pattern"])
|
||||
table(dattree[grp_hclust == 2, "Pattern"])
|
||||
table(dattree[grp_hclust == 3, "Pattern"])
|
||||
table(dattree[grp_hclust == 4, "Pattern"])
|
||||
|
||||
# Look at 3d plot to see if clusters are actually separate
|
||||
pc <- prcomp(df)
|
||||
coor <- as.data.frame(pc$x[, c(1, 2, 3)])
|
||||
rgl::plot3d(coor, col = c("#78004B", "#FF6900", "#3CB4DC", "#91C86E")[grp_hclust])
|
||||
|
||||
aggregate(. ~ grp_hclust, df, mean)
|
||||
|
||||
|
||||
aggregate(cbind(Duration, PropItems, SearchInfo, PropMoves, PathLinearity,
|
||||
Singularity, centr_degree, centr_degree_loops,
|
||||
centr_between) ~ grp_hclust, dattree, mean)
|
||||
|
||||
aggregate(cbind(duration, distance, scaleSize, rotationDegree, length,
|
||||
nmove, nflipCard, nopenTopic, nopenPopup) ~ grp_hclust, datcase,
|
||||
mean)
|
||||
|
||||
### DBSCAN clustering
|
||||
#--------------- (2.3) DBSCAN clustering ---------------
|
||||
|
||||
library(dbscan)
|
||||
d1 <- dbscan(df, eps = .5, minPts = 9)
|
||||
d1 <- dbscan(df, eps = .2, minPts = 9)
|
||||
hullplot(df, d1)
|
||||
|
||||
grp_db <- d1$cluster
|
||||
table(grp_db)
|
||||
|
||||
kNNdistplot(df, k = 6)
|
||||
abline(h = 0.5, col = "red")
|
||||
kNNdistplot(df, k = ncol(df))
|
||||
abline(h = 0.2, col = "red")
|
||||
|
||||
fviz_cluster(list(data = df[grp_db != 0, ], cluster = grp_db[grp_db != 0]),
|
||||
palette = c("#78004B", "#FF6900", "#3CB4DC", "#91C86E"),
|
||||
palette = mycols,
|
||||
ellipse.type = "convex",
|
||||
show.clust.cent = FALSE,
|
||||
ggtheme = theme_bw())
|
||||
|
||||
rgl::plot3d(coor, col = c("#78004B", "#FF6900", "#3CB4DC", "#91C86E")[grp_db + 1])
|
||||
rgl::plot3d(coor_3d, col = mycols[grp_db + 1])
|
||||
|
||||
aggregate(. ~ grp_db, df, mean)
|
||||
|
||||
@ -390,28 +414,12 @@ table(dattree[grp_db == 1, "Pattern"])
|
||||
table(dattree[grp_db == 2, "Pattern"])
|
||||
table(dattree[grp_db == 3, "Pattern"])
|
||||
|
||||
|
||||
### K-Means clustering
|
||||
|
||||
k1 <- kmeans(df, 4)
|
||||
|
||||
grp_km <- k1$cluster
|
||||
table(grp_km)
|
||||
|
||||
fviz_cluster(list(data = df, cluster = grp_km),
|
||||
palette = c("#78004B", "#FF6900", "#3CB4DC", "#91C86E"),
|
||||
ellipse.type = "convex",
|
||||
show.clust.cent = FALSE,
|
||||
ggtheme = theme_bw())
|
||||
|
||||
rgl::plot3d(coor, col = c("#78004B", "#FF6900", "#3CB4DC", "#91C86E")[grp_km])
|
||||
|
||||
### Look at selected cases ###########################################
|
||||
tmp <- res
|
||||
tmp <- dat
|
||||
tmp$start <- tmp$date.start
|
||||
tmp$complete <- tmp$date.stop
|
||||
|
||||
alog <- activitylog(tmp[tmp$case == 30855, ],
|
||||
alog <- activitylog(tmp[tmp$case == 30418, ],
|
||||
case_id = "case",
|
||||
activity_id = "item",
|
||||
resource_id = "path",
|
||||
@ -419,25 +427,26 @@ alog <- activitylog(tmp[tmp$case == 30855, ],
|
||||
|
||||
process_map(alog)
|
||||
|
||||
rm(tmp)
|
||||
|
||||
######################################################################
|
||||
|
||||
res <- merge(dat, dattree[, c("case", "grp")], by = "case", all.x = TRUE)
|
||||
res <- merge(dat, data.frame(case = dattree$case, grp_km, grp_hclust, grp_db),
|
||||
by = "case", all.x = TRUE)
|
||||
res <- res[order(res$fileId.start, res$date.start, res$timeMs.start), ]
|
||||
|
||||
rm(dat)
|
||||
|
||||
xtabs( ~ item + grp, res)
|
||||
aggregate(event ~ grp, res, table)
|
||||
xtabs( ~ item + grp_db, res)
|
||||
aggregate(event ~ grp_db, res, table)
|
||||
|
||||
# Look at clusters
|
||||
par(mfrow = c(2, 2))
|
||||
vioplot::vioplot(duration ~ grp, res)
|
||||
vioplot::vioplot(distance ~ grp, res)
|
||||
vioplot::vioplot(scaleSize ~ grp, res)
|
||||
vioplot::vioplot(rotationDegree ~ grp, res)
|
||||
vioplot::vioplot(duration ~ grp_db, res)
|
||||
vioplot::vioplot(distance ~ grp_db, res)
|
||||
vioplot::vioplot(scaleSize ~ grp_db, res)
|
||||
vioplot::vioplot(rotationDegree ~ grp_db, res)
|
||||
|
||||
aggregate(cbind(duration, distance, scaleSize, rotationDegree) ~ grp, res, mean)
|
||||
aggregate(cbind(duration, distance, scaleSize, rotationDegree) ~ grp, res, median)
|
||||
aggregate(cbind(duration, distance, scaleSize, rotationDegree) ~ grp_db, res, mean)
|
||||
aggregate(cbind(duration, distance, scaleSize, rotationDegree) ~ grp_db, res, median)
|
||||
|
||||
write.table(res,
|
||||
file = "results/haum/event_logfiles_pre-corona_with-clusters_cases.csv",
|
||||
@ -453,66 +462,36 @@ save(res, mat, h1, h2, h3, h4, h5, c1, c2, c3, c4, c5, datcase, dattree, df,
|
||||
library(rpart)
|
||||
library(partykit)
|
||||
|
||||
## dbscan
|
||||
|
||||
dattree_db <- dattree[grp_db != 0, ]
|
||||
|
||||
dattree_db$grp <- factor(grp_db[grp_db != 0])
|
||||
dattree_db$Pattern <- factor(dattree_db$Pattern)
|
||||
|
||||
c1 <- rpart(grp ~ AvDurItem + PropItems + SearchInfo + PropMoves +
|
||||
c1 <- rpart(grp ~ AvDurItem + PropItems + PropTopic + PropPopup + PropMoves +
|
||||
Pattern, data = dattree_db, method = "class")
|
||||
|
||||
c1 <- rpart(grp_db ~ AvDurItem + PropItems + PropTopic + PropPopup + PropMoves +
|
||||
Pattern, data = dattree, method = "class")
|
||||
|
||||
|
||||
plot(as.party(c1))
|
||||
|
||||
# with conditional tree
|
||||
c2 <- ctree(grp ~ AvDurItem + PropItems + PropTopic + PropPopup +
|
||||
PropMoves + Pattern, data = dattree_db, alpha = 0.5)
|
||||
plot(c2)
|
||||
|
||||
c1a <- rpart(grp_db ~ AvDurItem + PropItems + SearchInfo + PropMoves +
|
||||
Pattern, data = dattree, method = "class")
|
||||
|
||||
plot(as.party(c1a))
|
||||
|
||||
|
||||
c2 <- rpart(grp ~ PropItems + SearchInfo + PropMoves + Pattern,
|
||||
data = dattree_db, method = "class")
|
||||
|
||||
plot(as.party(c2))
|
||||
|
||||
# with conditional tree function
|
||||
c3 <- ctree(as.factor(grp_db) ~ AvDurItem + PropItems + PropTopic + PropPopup +
|
||||
PropMoves + as.factor(Pattern), data = dattree, alpha = 1)
|
||||
c3 <- ctree(grp ~ AvDurItem + PropItems + PropTopic + PropPopup +
|
||||
PropMoves + Pattern, data = dattree_db, alpha = 0)
|
||||
plot(c3)
|
||||
|
||||
cluster <- as.factor(grp_db[grp_db != 0])
|
||||
|
||||
c4 <- ctree(cluster ~ nmove + nflipCard + nopenTopic + nopenPopup,
|
||||
data = datcase[grp_db != 0, ], alpha = .001)
|
||||
c4 <- ctree(grp ~ AvDurItem + PropItems + PropTopic + PropPopup +
|
||||
PropMoves + Pattern, data = dattree_db, alpha = 1)
|
||||
plot(c4)
|
||||
|
||||
|
||||
c5 <- ctree(cluster ~ duration,
|
||||
data = datcase[grp_db != 0, ], alpha = .001)
|
||||
# with excluded points
|
||||
c5 <- ctree(factor(grp_db) ~ AvDurItem + PropItems + PropTopic + PropPopup +
|
||||
PropMoves + factor(Pattern), data = dattree, alpha = 1)
|
||||
plot(c5)
|
||||
|
||||
## hclust
|
||||
|
||||
c1 <- rpart(as.factor(grp_hclust) ~ AvDurItem + PropItems + SearchInfo + PropMoves +
|
||||
Pattern, data = dattree, method = "class")
|
||||
|
||||
plot(as.party(c1))
|
||||
|
||||
c3 <- ctree(as.factor(grp_hclust) ~ AvDurItem + PropItems + SearchInfo +
|
||||
PropMoves + as.factor(Pattern), data = dattree, alpha = 0)
|
||||
plot(c3)
|
||||
|
||||
c4 <- ctree(as.factor(grp_hclust) ~ nmove + nflipCard + nopenTopic + nopenPopup,
|
||||
data = datcase, alpha = .001)
|
||||
plot(c4)
|
||||
|
||||
|
||||
# with excluded points
|
||||
c6 <- ctree(factor(grp_db) ~ ., data = df, alpha = 1)
|
||||
plot(c6)
|
||||
# --> just checking
|
||||
|
||||
#--------------- (4) Investigate variants ---------------
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user