Cleaned up scripts; separated case data frame, clustering, and trace analysis into separate files

This commit is contained in:
Nora Wickelmaier 2024-03-08 11:52:55 +01:00
parent 3cf6c4c51d
commit 66fab4fa18
5 changed files with 474 additions and 481 deletions

View File

@ -0,0 +1,187 @@
# 09_user-navigation.R
#
# content: (1) Read data
# (2) Extract characteristics for cases
# (3) Select features for navigation behavior
# (4) Export data frames
#
# input: results/haum/event_logfiles_2024-02-21_16-07-33.csv
# output: results/haum/eventlogs_pre-corona_case-clusters.csv
#
# last mod: 2024-03-08
# setwd("C:/Users/nwickelmaier/Nextcloud/Documents/MDS/2023ss/60100_master_thesis/analysis/code")
source("R_helpers.R")
#--------------- (1) Read data ---------------
load("results/haum/eventlogs_pre-corona_cleaned.RData")
# Select one year to handle number of cases
dat <- dat[as.Date(dat$date.start) > "2018-12-31" &
as.Date(dat$date.start) < "2020-01-01", ]
#--------------- (2) Extract characteristics for cases ---------------
datcase <- aggregate(cbind(distance, scaleSize, rotationDegree) ~
case, dat, function(x) mean(x, na.rm = TRUE), na.action = NULL)
datcase$length <- aggregate(item ~ case, dat, length)$item
eventtab <- aggregate(event ~ case, dat, table)["case"]
eventtab$nmove <- aggregate(event ~ case, dat, table)$event[, "move"]
eventtab$nflipCard <- aggregate(event ~ case, dat, table)$event[, "flipCard"]
eventtab$nopenTopic <- aggregate(event ~ case, dat, table)$event[, "openTopic"]
eventtab$nopenPopup <- aggregate(event ~ case, dat, table)$event[, "openPopup"]
topictab <- aggregate(topic ~ case, dat, table)["case"]
topictab$artist <- aggregate(topic ~ case, dat, table)$topic[, 1]
topictab$details <- aggregate(topic ~ case, dat, table)$topic[, 2]
topictab$extra_info <- aggregate(topic ~ case, dat, table)$topic[, 3]
topictab$komposition <- aggregate(topic ~ case, dat, table)$topic[, 4]
topictab$leben_des_kunstwerks <- aggregate(topic ~ case, dat, table)$topic[, 5]
topictab$licht_und_farbe <- aggregate(topic ~ case, dat, table)$topic[, 6]
topictab$technik <- aggregate(topic ~ case, dat, table)$topic[, 7]
topictab$thema <- aggregate(topic ~ case, dat, table)$topic[, 8]
datcase <- datcase |>
merge(eventtab, by = "case", all = TRUE) |>
merge(topictab, by = "case", all = TRUE)
rm(eventtab, topictab)
datcase$ntopiccards <- aggregate(topic ~ case, dat,
function(x) ifelse(all(is.na(x)), NA,
length(na.omit(x))), na.action =
NULL)$topic
datcase$ntopics <- aggregate(topic ~ case, dat,
function(x) ifelse(all(is.na(x)), NA,
length(unique(na.omit(x)))), na.action =
NULL)$topic
datcase$nitems <- aggregate(item ~ case, dat, function(x)
length(unique(x)), na.action = NULL)$item
datcase$npaths <- aggregate(path ~ case, dat, function(x)
length(unique(x)), na.action = NULL)$path
datcase$vacation <- aggregate(vacation ~ case, dat,
function(x) ifelse(all(is.na(x)), 0, 1),
na.action = NULL)$vacation
datcase$holiday <- aggregate(holiday ~ case, dat,
function(x) ifelse(all(is.na(x)), 0, 1),
na.action = NULL)$holiday
datcase$weekend <- aggregate(weekdays ~ case, dat,
function(x) ifelse(any(x %in% c("Saturday", "Sunday")), 1, 0),
na.action = NULL)$weekdays
datcase$morning <- aggregate(date.start ~ case, dat,
function(x) ifelse(lubridate::hour(x[1]) > 13, 0, 1),
na.action = NULL)$date.start
dat_split <- split(dat, ~ case)
dat_list <- pbapply::pblapply(dat_split, time_minmax_ms)
dat_minmax <- dplyr::bind_rows(dat_list)
datcase$min_time <- aggregate(min_time ~ case, dat_minmax, unique)$min_time
datcase$max_time <- aggregate(max_time ~ case, dat_minmax, unique)$max_time
datcase$duration <- datcase$max_time - datcase$min_time
datcase$min_time <- NULL
datcase$max_time <- NULL
artworks <- unique(dat$item)[!unique(dat$item) %in% c("501", "502", "503")]
datcase$infocardOnly <- pbapply::pbsapply(dat_split, check_infocards, artworks = artworks)
# Clean up NAs
datcase$distance <- ifelse(is.na(datcase$distance), 0, datcase$distance)
datcase$scaleSize <- ifelse(is.na(datcase$scaleSize), 1, datcase$scaleSize)
datcase$rotationDegree <- ifelse(is.na(datcase$rotationDegree), 0, datcase$rotationDegree)
datcase$artist <- ifelse(is.na(datcase$artist), 0, datcase$artist)
datcase$details <- ifelse(is.na(datcase$details), 0, datcase$details)
datcase$extra_info <- ifelse(is.na(datcase$extra_info), 0, datcase$extra_info)
datcase$komposition <- ifelse(is.na(datcase$komposition), 0, datcase$komposition)
datcase$leben_des_kunstwerks <- ifelse(is.na(datcase$leben_des_kunstwerks), 0, datcase$leben_des_kunstwerks)
datcase$licht_und_farbe <- ifelse(is.na(datcase$licht_und_farbe), 0, datcase$licht_und_farbe)
datcase$technik <- ifelse(is.na(datcase$technik), 0, datcase$technik)
datcase$thema <- ifelse(is.na(datcase$thema), 0, datcase$thema)
datcase$ntopics <- ifelse(is.na(datcase$ntopics), 0, datcase$ntopics)
datcase$ntopiccards <- ifelse(is.na(datcase$ntopiccards), 0, datcase$ntopiccards)
#--------------- (3) Select features for navigation behavior ---------------
# Features for navigation types for MTT:
# - Scanning / Overviewing:
# * Proportion of artworks looked at is high
# * Duration per artwork is low: "ave_duration_item" / datcase$duration
# - Exploring:
# * Looking at additional information is high
# - Searching / Studying:
# * Proportion of artworks looked at is low
# * Opening few cards
# datcase$nflipCard / mean(datcase$nflipCard) or median(datcase$nflipCard) is low
# * but for most cards popups are opened:
# datcase$nopenPopup / datcase$nflipCard is high
# - Wandering / Flitting:
# * Proportion of moves is high
# * Duration per case is low:
# datcase$duration / mean(datcase$duration) or median(datcase$duration)
# * Duration per artwork is low: "ave_duration_item" / datcase$duration
dattree <- data.frame(case = datcase$case,
PropItems = datcase$nitems / length(unique(dat$item)),
SearchInfo = (datcase$nopenTopic +
datcase$nopenPopup) / datcase$length,
PropMoves = datcase$nmove / datcase$length,
PathLinearity = datcase$nitems / datcase$npaths,
Singularity = datcase$npaths / datcase$length
)
# centrality <- pbapply::pbsapply(dattree$case, get_centrality, data = dat)
# save(centrality, file = "results/haum/tmp_centrality.RData")
load("results/haum/tmp_centrality.RData")
dattree$BetweenCentrality <- centrality
# Average duration per item
dat_split <- split(dat[, c("item", "case", "path", "timeMs.start", "timeMs.stop")], ~ path)
dat_list <- pbapply::pblapply(dat_split, time_minmax_ms)
dat_minmax <- dplyr::bind_rows(dat_list)
tmp <- aggregate(min_time ~ path, dat_minmax, unique)
tmp$max_time <- aggregate(max_time ~ path, dat_minmax, unique, na.action = NULL)$max_time
tmp$duration <- tmp$max_time - tmp$min_time
tmp$case <- aggregate(case ~ path, dat_minmax, unique)$case
dattree$AvDurItem <- aggregate(duration ~ case, tmp, mean)$duration
rm(tmp)
# Indicator variable if table was used as info terminal only
dattree$InfocardOnly <- factor(datcase$infocardOnly, levels = 0:1,
labels = c("no", "yes"))
# Add pattern to datcase; loosely based on Bousbia et al. (2009)
dattree$Pattern <- "Dispersion"
dattree$Pattern <- ifelse(dattree$PathLinearity > 0.8, "Scholar",
dattree$Pattern)
dattree$Pattern <- ifelse(dattree$PathLinearity <= 0.8 &
dattree$BetweenCentrality >= 0.5, "Star",
dattree$Pattern)
dattree$Pattern <- factor(dattree$Pattern)
dattree$AvDurItemNorm <- normalize(dattree$AvDurItem)
#--------------- (4) Export data frames ---------------
save(datcase, dattree, file = "results/haum/dataframes_case_2019.RData")
write.table(datcase,
file = "results/haum/datcase.csv",
sep = ";",
quote = FALSE,
row.names = FALSE)
write.table(datcase,
file = "results/haum/dattree.csv",
sep = ";",
quote = FALSE,
row.names = FALSE)

View File

@ -1,481 +0,0 @@
# 09_user-navigation.R
#
# content: (1) Read data
# (1.1) Read log event data
# (1.2) Extract additional infos for clustering
# (2) Clustering
# (3) Fit tree
# (4) Investigate variants
#
# input: results/haum/event_logfiles_2024-02-21_16-07-33.csv
# output: results/haum/eventlogs_pre-corona_case-clusters.csv
#
# last mod: 2024-03-06
# setwd("C:/Users/nwickelmaier/Nextcloud/Documents/MDS/2023ss/60100_master_thesis/analysis/code")
library(bupaverse)
library(factoextra)
#--------------- (1) Read data ---------------
#--------------- (1.1) Read log event data ---------------
load("results/haum/eventlogs_pre-corona_cleaned.RData")
# Select one year to handle number of cases
dat <- dat[as.Date(dat$date.start) > "2018-12-31" &
as.Date(dat$date.start) < "2020-01-01", ]
#--------------- (1.2) Extract additional infos for clustering ---------------
datcase <- aggregate(cbind(distance, scaleSize, rotationDegree) ~
case, dat, function(x) mean(x, na.rm = TRUE), na.action = NULL)
datcase$length <- aggregate(item ~ case, dat, length)$item
eventtab <- aggregate(event ~ case, dat, table)["case"]
eventtab$nmove <- aggregate(event ~ case, dat, table)$event[, "move"]
eventtab$nflipCard <- aggregate(event ~ case, dat, table)$event[, "flipCard"]
eventtab$nopenTopic <- aggregate(event ~ case, dat, table)$event[, "openTopic"]
eventtab$nopenPopup <- aggregate(event ~ case, dat, table)$event[, "openPopup"]
topictab <- aggregate(topic ~ case, dat, table)["case"]
topictab$artist <- aggregate(topic ~ case, dat, table)$topic[, 1]
topictab$details <- aggregate(topic ~ case, dat, table)$topic[, 2]
topictab$extra_info <- aggregate(topic ~ case, dat, table)$topic[, 3]
topictab$komposition <- aggregate(topic ~ case, dat, table)$topic[, 4]
topictab$leben_des_kunstwerks <- aggregate(topic ~ case, dat, table)$topic[, 5]
topictab$licht_und_farbe <- aggregate(topic ~ case, dat, table)$topic[, 6]
topictab$technik <- aggregate(topic ~ case, dat, table)$topic[, 7]
topictab$thema <- aggregate(topic ~ case, dat, table)$topic[, 8]
datcase <- datcase |>
merge(eventtab, by = "case", all = TRUE) |>
merge(topictab, by = "case", all = TRUE)
rm(eventtab, topictab)
datcase$ntopiccards <- aggregate(topic ~ case, dat,
function(x) ifelse(all(is.na(x)), NA,
length(na.omit(x))), na.action =
NULL)$topic
datcase$ntopics <- aggregate(topic ~ case, dat,
function(x) ifelse(all(is.na(x)), NA,
length(unique(na.omit(x)))), na.action =
NULL)$topic
datcase$nitems <- aggregate(item ~ case, dat, function(x)
length(unique(x)), na.action = NULL)$item
datcase$npaths <- aggregate(path ~ case, dat, function(x)
length(unique(x)), na.action = NULL)$path
datcase$vacation <- aggregate(vacation ~ case, dat,
function(x) ifelse(all(is.na(x)), 0, 1),
na.action = NULL)$vacation
datcase$holiday <- aggregate(holiday ~ case, dat,
function(x) ifelse(all(is.na(x)), 0, 1),
na.action = NULL)$holiday
datcase$weekend <- aggregate(weekdays ~ case, dat,
function(x) ifelse(any(x %in% c("Saturday", "Sunday")), 1, 0),
na.action = NULL)$weekdays
datcase$morning <- aggregate(date.start ~ case, dat,
function(x) ifelse(lubridate::hour(x[1]) > 13, 0, 1),
na.action = NULL)$date.start
dat_split <- split(dat, ~ case)
time_minmax_ms <- function(subdata) {
subdata$min_time <- min(subdata$timeMs.start)
if (all(is.na(subdata$timeMs.stop))) {
subdata$max_time <- NA
} else {
subdata$max_time <- max(subdata$timeMs.stop, na.rm = TRUE)
}
subdata
}
# TODO: Move to helper file
dat_list <- pbapply::pblapply(dat_split, time_minmax_ms)
dat_minmax <- dplyr::bind_rows(dat_list)
datcase$min_time <- aggregate(min_time ~ case, dat_minmax, unique)$min_time
datcase$max_time <- aggregate(max_time ~ case, dat_minmax, unique)$max_time
datcase$duration <- datcase$max_time - datcase$min_time
datcase$min_time <- NULL
datcase$max_time <- NULL
check_infocards <- function(subdata, artworks) {
infocard_only <- NULL
if(any(unique(subdata$item) %in% artworks)) {
infocard_only <- FALSE
} else {
infocard_only <- TRUE
}
as.numeric(infocard_only)
}
# TODO: Move to helper file
artworks <- unique(dat$item)[!unique(dat$item) %in% c("501", "502", "503")]
datcase$infocardOnly <- pbapply::pbsapply(dat_split, check_infocards, artworks = artworks)
# Clean up NAs
datcase$distance <- ifelse(is.na(datcase$distance), 0, datcase$distance)
datcase$scaleSize <- ifelse(is.na(datcase$scaleSize), 1, datcase$scaleSize)
datcase$rotationDegree <- ifelse(is.na(datcase$rotationDegree), 0, datcase$rotationDegree)
datcase$artist <- ifelse(is.na(datcase$artist), 0, datcase$artist)
datcase$details <- ifelse(is.na(datcase$details), 0, datcase$details)
datcase$extra_info <- ifelse(is.na(datcase$extra_info), 0, datcase$extra_info)
datcase$komposition <- ifelse(is.na(datcase$komposition), 0, datcase$komposition)
datcase$leben_des_kunstwerks <- ifelse(is.na(datcase$leben_des_kunstwerks), 0, datcase$leben_des_kunstwerks)
datcase$licht_und_farbe <- ifelse(is.na(datcase$licht_und_farbe), 0, datcase$licht_und_farbe)
datcase$technik <- ifelse(is.na(datcase$technik), 0, datcase$technik)
datcase$thema <- ifelse(is.na(datcase$thema), 0, datcase$thema)
datcase$ntopics <- ifelse(is.na(datcase$ntopics), 0, datcase$ntopics)
datcase$ntopiccards <- ifelse(is.na(datcase$ntopiccards), 0, datcase$ntopiccards)
cor_mat <- cor(datcase[, -1], use = "pairwise")
diag(cor_mat) <- NA
heatmap(cor_mat)
normalize <- function(x) {
(x - min(x)) / (max(x) - min(x))
}
# TODO: Move to helper file
# Features for navigation types for MTT:
# - Scanning / Overviewing:
# * Proportion of artworks looked at is high
# * Duration per artwork is low: "ave_duration_item" / datcase$duration
# - Exploring:
# * Looking at additional information is high
# - Searching / Studying:
# * Proportion of artworks looked at is low
# * Opening few cards
# datcase$nflipCard / mean(datcase$nflipCard) or median(datcase$nflipCard) is low
# * but for most cards popups are opened:
# datcase$nopenPopup / datcase$nflipCard is high
# - Wandering / Flitting:
# * Proportion of moves is high
# * Duration per case is low:
# datcase$duration / mean(datcase$duration) or median(datcase$duration)
# * Duration per artwork is low: "ave_duration_item" / datcase$duration
dattree <- data.frame(case = datcase$case,
PropItems = datcase$nitems / length(unique(dat$item)),
SearchInfo = datcase$nopenTopic + datcase$nopenPopup,
PropMoves = datcase$nmove / datcase$length,
PathLinearity = datcase$nitems / datcase$npaths,
Singularity = datcase$npaths / datcase$length
)
dattree$SearchInfo <- ifelse(is.na(dattree$NumTopic), 0, dattree$NumTopic)
get_centrality <- function(case, data) {
data$start <- data$date.start
data$complete <- data$date.stop
alog <- activitylog(data[data$case == case, ],
case_id = "case",
activity_id = "item",
resource_id = "path",
timestamps = c("start", "complete"))
net <- process_map(alog, render = FALSE)
inet <- DiagrammeR::to_igraph(net)
#c(igraph::centr_degree(inet, loops = FALSE)$centralization,
# igraph::centr_degree(inet, loops = TRUE)$centralization,
# igraph::centr_betw(inet)$centralization)
igraph::centr_betw(inet)$centralization
}
# TODO: Move to helper file
centrality <- pbapply::pblapply(dattree$case, get_centrality, data = dat)
centrality <- do.call(rbind, centrality)
# save(centrality, file = "results/haum/tmp_centrality.RData")
#load("results/haum/tmp_centrality.RData")
dattree$BetweenCentrality <- unlist(centrality)
# Average duration per item
dat_split <- split(dat[, c("item", "case", "path", "timeMs.start", "timeMs.stop")], ~ path)
dat_list <- pbapply::pblapply(dat_split, time_minmax_ms)
dat_minmax <- dplyr::bind_rows(dat_list)
tmp <- aggregate(min_time ~ path, dat_minmax, unique)
tmp$max_time <- aggregate(max_time ~ path, dat_minmax, unique, na.action = NULL)$max_time
tmp$duration <- tmp$max_time - tmp$min_time
tmp$case <- aggregate(case ~ path, dat_minmax, unique)$case
dattree$AvDurItem <- aggregate(duration ~ case, tmp, mean)$duration
rm(tmp)
# Indicator variable if table was used as info terminal only
dattree$InfocardOnly <- factor(datcase$infocardOnly, levels = 0:1,
labels = c("no", "yes"))
# Add pattern to datcase; loosely based on Bousbia et al. (2009)
dattree$Pattern <- "Dispersion"
dattree$Pattern <- ifelse(dattree$PathLinearity > 0.8 & dattree$Singularity > 0.8, "Scholar",
dattree$Pattern)
dattree$Pattern <- ifelse(dattree$PathLinearity <= 0.8 &
dattree$BetweenCentrality > 0.5, "Star",
dattree$Pattern)
dattree$Pattern <- factor(dattree$Pattern)
# TODO: Get rid of PathLinearity and Singularity as features when I am
# using Pattern?
dattree$PathLinearity <- NULL
dattree$Singularity <- NULL
dattree$BetweenCentrality <- NULL
summary(dattree)
plot(dattree[, -1], pch = ".")
par(mfrow = c(2,4))
hist(dattree$AvDurItem, breaks = 50, main = "")
hist(dattree$NumItems, breaks = 50, main = "")
hist(dattree$NumTopic, breaks = 50, main = "")
hist(dattree$NumPopup, breaks = 50, main = "")
hist(dattree$PropMoves, breaks = 50, main = "")
hist(dattree$PathLinearity, breaks = 50, main = "")
hist(dattree$Singularity, breaks = 50, main = "")
hist(dattree$BetweenCentrality, breaks = 50, main = "")
#++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
# Remove cases with extreme outliers
# TODO: Do I want this???
quantile(datcase$nopenTopic, 0.999)
quantile(datcase$nopenPopup, 0.999)
dattree <- dattree[!(dattree$NumTopic > 40 | dattree$NumPopup > 40), ]
plot(dattree[, -1], pch = ".")
par(mfrow = c(2,4))
hist(dattree$AvDurItem, breaks = 50, main = "")
hist(dattree$NumItems, breaks = 50, main = "")
hist(dattree$NumTopic, breaks = 50, main = "")
hist(dattree$NumPopup, breaks = 50, main = "")
hist(dattree$PropMoves, breaks = 50, main = "")
hist(dattree$PathLinearity, breaks = 50, main = "")
hist(dattree$Singularity, breaks = 50, main = "")
hist(dattree$BetweenCentrality, breaks = 50, main = "")
#++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
#--------------- (2) Clustering ---------------
df <- dattree[, -1] # remove case variable
# Normalize Duration and SearchInfo
df$AvDurItem <- normalize(df$AvDurItem)
df$SearchInfo <- normalize(df$SearchInfo)
summary(df)
# Look at collinearity
cor_mat <- cor(df)
diag(cor_mat) <- NA
heatmap(cor_mat)
#--------------- (2.2) Hierarchical clustering ---------------
dist_mat <- cluster::daisy(df, metric = "gower")
# "Flatten" with MDS
coor_2d <- as.data.frame(cmdscale(dist_mat, k = 2))
coor_3d <- as.data.frame(cmdscale(dist_mat, k = 3))
# TODO: Better use MASS::isoMDS() since I am not using Euclidean distances?
plot(coor_2d)
rgl::plot3d(coor_3d)
method <- c(average = "average", single = "single", complete = "complete",
ward = "ward")
method <- "ward"
hcs <- pbapply::pblapply(method, function(x) cluster::agnes(dist_mat, method = x))
acs <- pbapply::pbsapply(hcs, function(x) x$ac)
hc <- hcs$ward
# Something like a scree plot (??)
plot(rev(hc$height)[1:100], type = "b", pch = 16, cex = .5)
k <- 4
mycols <- c("#78004B", "#FF6900", "#3CB4DC", "#91C86E")
cluster <- cutree(as.hclust(hc), k = k)
table(cluster)
plot(coor_2d, col = mycols[cluster])
legend("topleft", paste("Cl", 1:4), col = mycols, pch = 21)
rgl::plot3d(coor_3d, col = mycols[cluster])
table(dattree[cluster == 1, "Pattern"])
table(dattree[cluster == 2, "Pattern"])
table(dattree[cluster == 3, "Pattern"])
table(dattree[cluster == 4, "Pattern"])
table(dattree[cluster == 1, "InfocardOnly"])
table(dattree[cluster == 2, "InfocardOnly"])
table(dattree[cluster == 3, "InfocardOnly"])
table(dattree[cluster == 4, "InfocardOnly"])
aggregate(. ~ cluster, df, mean)
aggregate(cbind(duration, distance, scaleSize, rotationDegree, length,
nmove, nflipCard, nopenTopic, nopenPopup) ~ cluster, datcase,
mean)
### Look at selected cases ###########################################
tmp <- dat
tmp$start <- tmp$date.start
tmp$complete <- tmp$date.stop
alog <- activitylog(tmp[tmp$case == 24016, ],
case_id = "case",
activity_id = "item",
resource_id = "path",
timestamps = c("start", "complete"))
process_map(alog)
rm(tmp)
######################################################################
res <- merge(dat, data.frame(case = dattree$case, cluster),
by = "case", all.x = TRUE)
res <- res[order(res$fileId.start, res$date.start, res$timeMs.start), ]
xtabs( ~ item + cluster, res)
aggregate(event ~ cluster, res, table)
# Look at clusters
par(mfrow = c(2, 2))
vioplot::vioplot(duration ~ cluster, res)
vioplot::vioplot(distance ~ cluster, res)
vioplot::vioplot(scaleSize ~ cluster, res)
vioplot::vioplot(rotationDegree ~ cluster, res)
aggregate(cbind(duration, distance, scaleSize, rotationDegree) ~ cluster, res, mean)
aggregate(cbind(duration, distance, scaleSize, rotationDegree) ~ cluster, res, median)
write.table(res,
file = "results/haum/eventlogs_2019_case-clusters.csv",
sep = ";",
quote = FALSE,
row.names = FALSE)
save(res, dist_mat, hcs, acs, datcase, dattree, coor_2d, coor_3d,
file = "results/haum/tmp_user-navigation.RData")
#--------------- (3) Fit tree ---------------
library(rpart)
library(partykit)
c1 <- rpart(as.factor(cluster) ~ ., data = dattree[, -1], method = "class")
plot(as.party(c1))
# with conditional tree
c2 <- ctree(as.factor(cluster) ~ ., data = dattree[, -1], alpha = 0)
plot(c2)
#--------------- (4) Investigate variants ---------------
res$start <- res$date.start
res$complete <- res$date.stop
alog <- activitylog(res,
case_id = "case",
activity_id = "item",
resource_id = "path",
timestamps = c("start", "complete"))
trace_explorer(alog, n_traces = 25)
# --> sequences of artworks are just too rare
tr <- traces(alog)
trace_length <- pbapply::pbsapply(strsplit(tr$trace, ","), length)
tr[trace_length > 10, ]
trace_varied <- pbapply::pbsapply(strsplit(tr$trace, ","), function(x) length(unique(x)))
tr[trace_varied > 1, ]
table(tr[trace_varied > 2, "absolute_frequency"])
table(tr[trace_varied > 3, "absolute_frequency"])
summary(tr$absolute_frequency)
vioplot::vioplot(tr$absolute_frequency)
# Power law for frequencies of traces
tab <- table(tr$absolute_frequency)
x <- as.numeric(tab)
y <- as.numeric(names(tab))
plot(x, y, log = "xy")
p1 <- lm(log(y) ~ log(x))
pre <- exp(coef(p1)[1]) * x^coef(p1)[2]
lines(x, pre)
# Look at individual traces as examples
tr[trace_varied == 5 & trace_length > 50, ]
# --> every variant exists only once, of course
datcase[datcase$nitems == 5 & datcase$length > 50,]
pbapply::pbsapply(datcase[, -c(1, 9)], median)
#ex <- datcase[datcase$nitems == 4 & datcase$length == 15,]
ex <- datcase[datcase$nitems == 5,]
ex <- ex[sample(1:nrow(ex), 20), ]
# --> pretty randomly chosen... TODO:
case_ids <- NULL
for (case in ex$case) {
if ("080" %in% res$item[res$case == case] | "503" %in% res$item[res$case == case]) {
case_ids <- c(case_ids, TRUE)
} else {
case_ids <- c(case_ids, FALSE)
}
}
cases <- ex$case[case_ids]
for (case in cases) {
alog <- activitylog(res[res$case == case, ],
case_id = "case",
activity_id = "item",
resource_id = "path",
timestamps = c("start", "complete"))
dfg <- process_map(alog,
type_nodes = frequency("absolute", color_scale = "Greys"),
type_edges = frequency("absolute", color_edges = "#FF6900"),
rankdir = "LR",
render = FALSE)
export_map(dfg,
file_name = paste0("results/processmaps/dfg_example_cases_", case, "_R.pdf"),
file_type = "pdf",
title = paste("Case", case))
}

141
code/10_user-navigation.R Normal file
View File

@ -0,0 +1,141 @@
# 10_user-navigation.R
#
# content: (1) Load data
# (2) Clustering
# (3) Fit tree
# (4) Investigate variants
#
# input: results/haum/event_logfiles_2024-02-21_16-07-33.csv
# output: results/haum/eventlogs_pre-corona_case-clusters.csv
#
# last mod: 2024-03-08
# setwd("C:/Users/nwickelmaier/Nextcloud/Documents/MDS/2023ss/60100_master_thesis/analysis/code")
library(bupaverse)
library(factoextra)
library(rpart)
library(partykit)
#--------------- (1) Load data ---------------
load("results/haum/dataframes_case_2019.RData")
#--------------- (2) Clustering ---------------
df <- dattree[, -1]
summary(df)
# Look at collinearity
cor_mat <- cor(df)
diag(cor_mat) <- NA
heatmap(cor_mat)
#--------------- (2.2) Hierarchical clustering ---------------
dist_mat <- cluster::daisy(df, metric = "gower")
# "Flatten" with MDS
coor_2d <- as.data.frame(cmdscale(dist_mat, k = 2))
coor_3d <- as.data.frame(cmdscale(dist_mat, k = 3))
# TODO: Better use MASS::isoMDS() since I am not using Euclidean distances?
plot(coor_2d)
rgl::plot3d(coor_3d)
method <- c(average = "average", single = "single", complete = "complete",
ward = "ward")
method <- "ward"
hcs <- pbapply::pblapply(method, function(x) cluster::agnes(dist_mat, method = x))
acs <- pbapply::pbsapply(hcs, function(x) x$ac)
hc <- hcs$ward
# Something like a scree plot (??)
plot(rev(hc$height)[1:100], type = "b", pch = 16, cex = .5)
k <- 4
mycols <- c("#78004B", "#FF6900", "#3CB4DC", "#91C86E")
cluster <- cutree(as.hclust(hc), k = k)
table(cluster)
plot(coor_2d, col = mycols[cluster])
legend("topleft", paste("Cl", 1:4), col = mycols, pch = 21)
rgl::plot3d(coor_3d, col = mycols[cluster])
table(dattree[cluster == 1, "Pattern"])
table(dattree[cluster == 2, "Pattern"])
table(dattree[cluster == 3, "Pattern"])
table(dattree[cluster == 4, "Pattern"])
table(dattree[cluster == 1, "InfocardOnly"])
table(dattree[cluster == 2, "InfocardOnly"])
table(dattree[cluster == 3, "InfocardOnly"])
table(dattree[cluster == 4, "InfocardOnly"])
aggregate(. ~ cluster, df, mean)
aggregate(cbind(duration, distance, scaleSize, rotationDegree, length,
nmove, nflipCard, nopenTopic, nopenPopup) ~ cluster, datcase,
mean)
### Look at selected cases ###########################################
tmp <- dat
tmp$start <- tmp$date.start
tmp$complete <- tmp$date.stop
alog <- activitylog(tmp[tmp$case == 24016, ],
case_id = "case",
activity_id = "item",
resource_id = "path",
timestamps = c("start", "complete"))
process_map(alog)
rm(tmp)
######################################################################
res <- merge(dat, data.frame(case = dattree$case, cluster),
by = "case", all.x = TRUE)
res <- res[order(res$fileId.start, res$date.start, res$timeMs.start), ]
xtabs( ~ item + cluster, res)
aggregate(event ~ cluster, res, table)
# Look at clusters
par(mfrow = c(2, 2))
vioplot::vioplot(duration ~ cluster, res)
vioplot::vioplot(distance ~ cluster, res)
vioplot::vioplot(scaleSize ~ cluster, res)
vioplot::vioplot(rotationDegree ~ cluster, res)
aggregate(cbind(duration, distance, scaleSize, rotationDegree) ~ cluster, res, mean)
aggregate(cbind(duration, distance, scaleSize, rotationDegree) ~ cluster, res, median)
write.table(res,
file = "results/haum/eventlogs_2019_case-clusters.csv",
sep = ";",
quote = FALSE,
row.names = FALSE)
save(res, dist_mat, hcs, acs, datcase, dattree, coor_2d, coor_3d,
file = "results/haum/tmp_user-navigation.RData")
#--------------- (3) Fit tree ---------------
c1 <- rpart(as.factor(cluster) ~ ., data = dattree[, -1], method = "class")
plot(as.party(c1))
# with conditional tree
c2 <- ctree(as.factor(cluster) ~ ., data = dattree[, -1], alpha = 0)
plot(c2)

View File

@ -0,0 +1,101 @@
# 11_investigate-variants.R
#
# content: (1) Read data
# (2) Extract characteristics for cases
# (3) Select features for navigation behavior
# (4) Export data frames
#
# input: results/haum/event_logfiles_2024-02-21_16-07-33.csv
# output: results/haum/eventlogs_pre-corona_case-clusters.csv
#
# last mod: 2024-03-08
# setwd("C:/Users/nwickelmaier/Nextcloud/Documents/MDS/2023ss/60100_master_thesis/analysis/code")
#--------------- (1) Read data ---------------
load("results/haum/eventlogs_pre-corona_cleaned.RData")
#--------------- (4) Investigate variants ---------------
res$start <- res$date.start
res$complete <- res$date.stop
alog <- activitylog(res,
case_id = "case",
activity_id = "item",
resource_id = "path",
timestamps = c("start", "complete"))
trace_explorer(alog, n_traces = 25)
# --> sequences of artworks are just too rare
tr <- traces(alog)
trace_length <- pbapply::pbsapply(strsplit(tr$trace, ","), length)
tr[trace_length > 10, ]
trace_varied <- pbapply::pbsapply(strsplit(tr$trace, ","), function(x) length(unique(x)))
tr[trace_varied > 1, ]
table(tr[trace_varied > 2, "absolute_frequency"])
table(tr[trace_varied > 3, "absolute_frequency"])
summary(tr$absolute_frequency)
vioplot::vioplot(tr$absolute_frequency)
# Power law for frequencies of traces
tab <- table(tr$absolute_frequency)
x <- as.numeric(tab)
y <- as.numeric(names(tab))
plot(x, y, log = "xy")
p1 <- lm(log(y) ~ log(x))
pre <- exp(coef(p1)[1]) * x^coef(p1)[2]
lines(x, pre)
# Look at individual traces as examples
tr[trace_varied == 5 & trace_length > 50, ]
# --> every variant exists only once, of course
datcase[datcase$nitems == 5 & datcase$length > 50,]
pbapply::pbsapply(datcase[, -c(1, 9)], median)
#ex <- datcase[datcase$nitems == 4 & datcase$length == 15,]
ex <- datcase[datcase$nitems == 5,]
ex <- ex[sample(1:nrow(ex), 20), ]
# --> pretty randomly chosen... TODO:
case_ids <- NULL
for (case in ex$case) {
if ("080" %in% res$item[res$case == case] | "503" %in% res$item[res$case == case]) {
case_ids <- c(case_ids, TRUE)
} else {
case_ids <- c(case_ids, FALSE)
}
}
cases <- ex$case[case_ids]
for (case in cases) {
alog <- activitylog(res[res$case == case, ],
case_id = "case",
activity_id = "item",
resource_id = "path",
timestamps = c("start", "complete"))
dfg <- process_map(alog,
type_nodes = frequency("absolute", color_scale = "Greys"),
type_edges = frequency("absolute", color_edges = "#FF6900"),
rankdir = "LR",
render = FALSE)
export_map(dfg,
file_name = paste0("results/processmaps/dfg_example_cases_", case, "_R.pdf"),
file_type = "pdf",
title = paste("Case", case))
}

45
code/R_helpers.R Normal file
View File

@ -0,0 +1,45 @@
######################################################################
time_minmax_ms <- function(subdata) {
subdata$min_time <- min(subdata$timeMs.start)
if (all(is.na(subdata$timeMs.stop))) {
subdata$max_time <- NA
} else {
subdata$max_time <- max(subdata$timeMs.stop, na.rm = TRUE)
}
subdata
}
######################################################################
check_infocards <- function(subdata, artworks) {
infocard_only <- NULL
if(any(unique(subdata$item) %in% artworks)) {
infocard_only <- FALSE
} else {
infocard_only <- TRUE
}
as.numeric(infocard_only)
}
######################################################################
normalize <- function(x) {
(x - min(x)) / (max(x) - min(x))
}
######################################################################
get_centrality <- function(case, data) {
data$start <- data$date.start
data$complete <- data$date.stop
alog <- bupaR::activitylog(data[data$case == case, ],
case_id = "case",
activity_id = "item",
resource_id = "path",
timestamps = c("start", "complete"))
net <- processmapR::process_map(alog, render = FALSE)
inet <- DiagrammeR::to_igraph(net)
igraph::centr_betw(inet)$centralization
}