web2py.transcription/modules/transcription_tools/__init__.py
2021-10-08 15:39:51 +02:00

67 lines
1.8 KiB
Python

# REQUIREMENTS
#
# module srt
# module vosk
# language model
#
# INSTALL
#
# cd web2py/applications/transcription
# pip3 install -t modules srt
# pip3 install -t modules vosk
# cd private
# wget https://alphacephei.com/vosk/models/vosk-model-de-0.21.zip
# unzip vosk-model-de-0.21.zip
from vosk import Model, KaldiRecognizer, SetLogLevel
import sys
import os
import wave
import subprocess
import srt
import json
import datetime
def create_vtt(model_path, video_path):
sample_rate = 16000
model = Model(model_path)
rec = KaldiRecognizer(model, sample_rate)
rec.SetWords(True)
process = subprocess.Popen(['ffmpeg', '-loglevel', 'quiet', '-i',
video_path,
'-ar', str(sample_rate) , '-ac', '1', '-f', 's16le', '-'],
stdout=subprocess.PIPE)
WORDS_PER_LINE = 7
def transcribe():
results = []
subs = []
while True:
data = process.stdout.read(4000)
if len(data) == 0:
break
if rec.AcceptWaveform(data):
results.append(rec.Result())
results.append(rec.FinalResult())
for i, res in enumerate(results):
jres = json.loads(res)
if not 'result' in jres:
continue
words = jres['result']
for j in range(0, len(words), WORDS_PER_LINE):
line = words[j : j + WORDS_PER_LINE]
s = srt.Subtitle(index=len(subs),
content=" ".join([l['word'] for l in line]),
start=datetime.timedelta(seconds=line[0]['start']),
end=datetime.timedelta(seconds=line[-1]['end']))
subs.append(s)
return subs
return (srt.compose(transcribe()))