# REQUIREMENTS # # module srt # module vosk # language model # # INSTALL # # cd web2py/applications/transcription # pip3 install -t modules srt # pip3 install -t modules vosk # cd private # wget https://alphacephei.com/vosk/models/vosk-model-de-0.21.zip # unzip vosk-model-de-0.21.zip from vosk import Model, KaldiRecognizer, SetLogLevel import sys import os import wave import subprocess import srt import json import datetime def create_vtt(model_path, video_path): sample_rate = 16000 model = Model(model_path) rec = KaldiRecognizer(model, sample_rate) rec.SetWords(True) process = subprocess.Popen(['ffmpeg', '-loglevel', 'quiet', '-i', video_path, '-ar', str(sample_rate) , '-ac', '1', '-f', 's16le', '-'], stdout=subprocess.PIPE) WORDS_PER_LINE = 7 def transcribe(): results = [] subs = [] while True: data = process.stdout.read(4000) if len(data) == 0: break if rec.AcceptWaveform(data): results.append(rec.Result()) results.append(rec.FinalResult()) for i, res in enumerate(results): jres = json.loads(res) if not 'result' in jres: continue words = jres['result'] for j in range(0, len(words), WORDS_PER_LINE): line = words[j : j + WORDS_PER_LINE] s = srt.Subtitle(index=len(subs), content=" ".join([l['word'] for l in line]), start=datetime.timedelta(seconds=line[0]['start']), end=datetime.timedelta(seconds=line[-1]['end'])) subs.append(s) return subs return (srt.compose(transcribe()))