181 lines
7.1 KiB
Diff
181 lines
7.1 KiB
Diff
|
--- a/examples/plotting/volume_plot.py 2022-07-04 22:38:36.000000000 +0800
|
||
|
+++ b/examples/plotting/volume_plot.py 2022-07-26 20:45:34.932699691 +0800
|
||
|
@@ -15,7 +15,8 @@
|
||
|
|
||
|
fig = vp.Fig(bgcolor='k', size=(800, 800), show=False)
|
||
|
|
||
|
-vol_data = np.load(io.load_data_file('brain/mri.npz'))['data']
|
||
|
+try: vol_data = np.load(io.load_data_file('brain/mri.npz'))['data']
|
||
|
+except Exception: vol_data = np.load('mri.npz')['data']
|
||
|
vol_data = np.flipud(np.rollaxis(vol_data, 1))
|
||
|
vol_data = vol_data.astype(np.float32)
|
||
|
|
||
|
--- a/examples/scene/clipping_planes.py 2022-07-04 22:38:36.000000000 +0800
|
||
|
+++ b/examples/scene/clipping_planes.py 2022-07-26 19:36:08.699950700 +0800
|
||
|
@@ -24,7 +24,8 @@
|
||
|
view = canvas.central_widget.add_view()
|
||
|
|
||
|
# Create the visuals
|
||
|
-vol = np.load(io.load_data_file('volume/stent.npz'))['arr_0']
|
||
|
+try: vol = np.load(io.load_data_file('volume/stent.npz'))['arr_0']
|
||
|
+except Exception: vol = np.load('stent.npz')['arr_0']
|
||
|
volume = scene.visuals.Volume(vol, parent=view.scene, threshold=0.225)
|
||
|
|
||
|
np.random.seed(1)
|
||
|
--- a/examples/scene/contour.py 2022-07-04 22:38:36.000000000 +0800
|
||
|
+++ b/examples/scene/contour.py 2022-07-26 14:56:04.667132876 +0800
|
||
|
@@ -24,7 +24,8 @@
|
||
|
view = canvas.central_widget.add_view()
|
||
|
|
||
|
interpolation = 'cubic'
|
||
|
-img_data = read_png(load_data_file('mona_lisa/mona_lisa_sm.png'))
|
||
|
+try: img_data = read_png(load_data_file('mona_lisa/mona_lisa_sm.png'))
|
||
|
+except Exception: img_data = read_png('mona_lisa_sm.png')
|
||
|
image = scene.visuals.Image(img_data, interpolation=interpolation,
|
||
|
parent=view.scene, method='impostor')
|
||
|
level = 10
|
||
|
--- a/examples/scene/flipped_axis.py 2022-07-04 22:38:36.000000000 +0800
|
||
|
+++ b/examples/scene/flipped_axis.py 2022-07-26 19:37:26.926953177 +0800
|
||
|
@@ -27,7 +27,8 @@
|
||
|
from vispy import app, scene, io
|
||
|
|
||
|
# Read volume
|
||
|
-vol1 = np.load(io.load_data_file('volume/stent.npz'))['arr_0']
|
||
|
+try: vol1 = np.load(io.load_data_file('volume/stent.npz'))['arr_0']
|
||
|
+except Exception: vol1 = np.load('stent.npz')['arr_0']
|
||
|
|
||
|
# Prepare canvas
|
||
|
canvas = scene.SceneCanvas(keys='interactive', size=(800, 600), show=True)
|
||
|
--- a/examples/scene/image_custom_kernel.py 2022-11-08 17:13:28.000000000 +0800
|
||
|
+++ b/examples/scene/image_custom_kernel.py 2022-11-11 18:48:20.187045450 +0800
|
||
|
@@ -32,10 +32,14 @@
|
||
|
view = canvas.central_widget.add_view()
|
||
|
|
||
|
# Load the image with a slight blur (so we can later show the sharpening filter)
|
||
|
-img_data = gaussian_filter(
|
||
|
- read_png(load_data_file('mona_lisa/mona_lisa_sm.png')),
|
||
|
- sigma=1,
|
||
|
-)
|
||
|
+try: img_data = gaussian_filter(
|
||
|
+ read_png(load_data_file('mona_lisa/mona_lisa_sm.png')),
|
||
|
+ sigma=1,
|
||
|
+ )
|
||
|
+except Exception: img_data = gaussian_filter(
|
||
|
+ read_png('mona_lisa_sm.png'),
|
||
|
+ sigma=1,
|
||
|
+ )
|
||
|
|
||
|
# build gaussian kernel
|
||
|
small_gaussian_window = gaussian(5, 1)
|
||
|
--- a/examples/scene/image.py 2022-07-04 22:38:36.000000000 +0800
|
||
|
+++ b/examples/scene/image.py 2022-07-26 19:28:07.967807623 +0800
|
||
|
@@ -25,7 +25,8 @@
|
||
|
view = canvas.central_widget.add_view()
|
||
|
|
||
|
# Create the image
|
||
|
-img_data = read_png(load_data_file('mona_lisa/mona_lisa_sm.png'))
|
||
|
+try: img_data = read_png(load_data_file('mona_lisa/mona_lisa_sm.png'))
|
||
|
+except Exception: img_data = read_png('mona_lisa_sm.png')
|
||
|
interpolation = 'nearest'
|
||
|
|
||
|
image = scene.visuals.Image(img_data, interpolation=interpolation,
|
||
|
--- a/examples/scene/mesh_normals.py 2022-07-04 22:38:36.000000000 +0800
|
||
|
+++ b/examples/scene/mesh_normals.py 2022-07-26 19:44:23.872044303 +0800
|
||
|
@@ -17,7 +17,8 @@
|
||
|
from vispy.visuals.filters import WireframeFilter
|
||
|
|
||
|
|
||
|
-mesh_file = load_data_file('orig/triceratops.obj.gz')
|
||
|
+try: mesh_file = load_data_file('orig/triceratops.obj.gz')
|
||
|
+except Exception: mesh_file = 'triceratops.obj.gz'
|
||
|
vertices, faces, _, _ = read_mesh(mesh_file)
|
||
|
|
||
|
mesh = Mesh(vertices, faces, shading='flat')
|
||
|
--- a/examples/scene/mesh_shading.py 2022-07-04 22:38:36.000000000 +0800
|
||
|
+++ b/examples/scene/mesh_shading.py 2022-07-26 19:50:49.250307944 +0800
|
||
|
@@ -21,7 +21,8 @@
|
||
|
|
||
|
|
||
|
parser = argparse.ArgumentParser()
|
||
|
-default_mesh = load_data_file('orig/triceratops.obj.gz')
|
||
|
+try: default_mesh = load_data_file('orig/triceratops.obj.gz')
|
||
|
+except Exception: default_mesh = 'triceratops.obj.gz'
|
||
|
parser.add_argument('--mesh', default=default_mesh)
|
||
|
parser.add_argument('--shininess', default=100)
|
||
|
parser.add_argument('--wireframe-width', default=1)
|
||
|
--- a/examples/scene/mesh_texture.py 2022-07-04 22:38:36.000000000 +0800
|
||
|
+++ b/examples/scene/mesh_texture.py 2022-07-26 19:30:50.795219791 +0800
|
||
|
@@ -27,8 +27,10 @@
|
||
|
help="shading mode")
|
||
|
args, _ = parser.parse_known_args()
|
||
|
|
||
|
-mesh_path = load_data_file('spot/spot.obj.gz')
|
||
|
-texture_path = load_data_file('spot/spot.png')
|
||
|
+try: mesh_path = load_data_file('spot/spot.obj.gz')
|
||
|
+except Exception: mesh_path = 'spot.obj.gz'
|
||
|
+try: texture_path = load_data_file('spot/spot.png')
|
||
|
+except Exception: texture_path = 'spot.png'
|
||
|
vertices, faces, normals, texcoords = read_mesh(mesh_path)
|
||
|
texture = np.flipud(imread(texture_path))
|
||
|
|
||
|
--- a/examples/scene/one_cam_two_scenes.py 2022-07-04 22:38:36.000000000 +0800
|
||
|
+++ b/examples/scene/one_cam_two_scenes.py 2022-07-26 20:29:47.386543725 +0800
|
||
|
@@ -31,7 +31,8 @@
|
||
|
grid.add_widget(vb2, 0, 1)
|
||
|
|
||
|
# Create the image
|
||
|
-im1 = io.load_crate().astype('float32') / 255
|
||
|
+try: im1 = io.load_crate().astype('float32') / 255
|
||
|
+except Exception: im1 = np.load('crate.npz')['crate'].astype('float32') / 255
|
||
|
# Make gray, smooth, and take derivatives: edge enhancement
|
||
|
im2 = im1[:, :, 1]
|
||
|
im2 = (im2[1:-1, 1:-1] + im2[0:-2, 1:-1] + im2[2:, 1:-1] +
|
||
|
--- a/examples/scene/one_scene_four_cams.py 2022-07-04 22:38:36.000000000 +0800
|
||
|
+++ b/examples/scene/one_scene_four_cams.py 2022-07-26 20:31:14.493566153 +0800
|
||
|
@@ -20,6 +20,8 @@
|
||
|
|
||
|
import sys
|
||
|
|
||
|
+import numpy as np
|
||
|
+
|
||
|
from vispy import app, scene, io
|
||
|
|
||
|
canvas = scene.SceneCanvas(keys='interactive')
|
||
|
@@ -42,7 +44,8 @@
|
||
|
grid.add_widget(vb4, 1, 1)
|
||
|
|
||
|
# Create some visuals to show
|
||
|
-im1 = io.load_crate().astype('float32') / 255
|
||
|
+try: im1 = io.load_crate().astype('float32') / 255
|
||
|
+except Exception: im1 = np.load('crate.npz')['crate'].astype('float32') / 255
|
||
|
for par in scenes:
|
||
|
image = scene.visuals.Image(im1, grid=(20, 20), parent=par)
|
||
|
|
||
|
--- a/examples/scene/volume_plane.py 2022-07-04 22:38:36.000000000 +0800
|
||
|
+++ b/examples/scene/volume_plane.py 2022-07-26 20:30:56.050157494 +0800
|
||
|
@@ -25,7 +25,8 @@
|
||
|
from vispy.visuals.transforms import STTransform
|
||
|
|
||
|
# Read volume
|
||
|
-vol = np.load(io.load_data_file('volume/stent.npz'))['arr_0']
|
||
|
+try: vol = np.load(io.load_data_file('volume/stent.npz'))['arr_0']
|
||
|
+except Exception: vol = np.load('stent.npz')['arr_0']
|
||
|
|
||
|
# Prepare canvas
|
||
|
canvas = scene.SceneCanvas(keys='interactive', show=True)
|
||
|
--- a/examples/scene/volume.py 2022-07-04 22:38:36.000000000 +0800
|
||
|
+++ b/examples/scene/volume.py 2022-07-26 20:22:35.644780291 +0800
|
||
|
@@ -39,8 +39,10 @@
|
||
|
from vispy.visuals.transforms import STTransform
|
||
|
|
||
|
# Read volume
|
||
|
-vol1 = np.load(io.load_data_file('volume/stent.npz'))['arr_0']
|
||
|
-vol2 = np.load(io.load_data_file('brain/mri.npz'))['data']
|
||
|
+try: vol1 = np.load(io.load_data_file('volume/stent.npz'))['arr_0']
|
||
|
+except Exception: vol1 = np.load('stent.npz')['arr_0']
|
||
|
+try: vol2 = np.load(io.load_data_file('brain/mri.npz'))['data']
|
||
|
+except Exception: vol2 = np.load('mri.npz')['data']
|
||
|
vol2 = np.flipud(np.rollaxis(vol2, 1))
|
||
|
|
||
|
# Prepare canvas
|