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Overview

Large effects from subtle manipulations?

Inference and power

Power analysis by simulation
® Do it yourself
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® Probably never heard anyone complain about this
® But it is a huge problem for the scientific integrity of our field

® Reported effect sizes in the literature are way too large
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Examples

® Decision biases from two-hand tapping
® Beautiful parents have more daughters



Refresher: Framing

® Tversky and Kahneman (1981)

“Imagine that the U.S. is preparing for the outbreak of an unusual Asian disease,
which is expected to kill 600 people. Two alternative programs to combat the
disease have been proposed” (p. 453)

If Program A is adopted 200 people If Program C is adopted 400 people
will be saved [109] will die [34]

If Program B is adopted there is If Program D is adopted there is
1/3 probability that 600 people will 1/3 probability that nobody will

be saved, and 2/3 probability that die, and 2/3 probability that

no people will be saved [43] ) 600 people will die [121]

e Odds ratio (OR) = 9.0



Decision biases from two-hand tapping

® McElroy and Seta (2004), n = 48

“a behavioral task of finger tapping was used to induce asymmetrical activation of
the respective hemispheres ... Framing effects were found when the right
hemisphere was selectively activated whereas they were not observed when the left
hemisphere was selectively activated” (p. 572)

right-hand tapping left-hand tapping ratio of odds

safe risky safe risky ratios (ROR)
gain 8 4 12 1
loss 7 4 3 9
OR 1.1 36 31.5



Decision biases from two-hand tapping

® McElroy and Seta (2004), n = 48

“a behavioral task of finger tapping was used to induce asymmetrical activation of
the respective hemispheres ... Framing effects were found when the right
hemisphere was selectively activated whereas they were not observed when the left
hemisphere was selectively activated” (p. 572)

right-hand tapping left-hand tapping ratio of odds

safe risky safe risky ratios (ROR)
gain 8 4 12 1
loss 7 4 3 9
OR 1.1 36 31.5

¢ Replication at the Pl (see Gelman, 2020), n = 332

gain 52 31 56 27
loss 26 57 30 53
OR 3.7 3.7 1.0



Beautiful parents have more daughters
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Fig. 1. Proportion of boys among the first child, by parent’s physical
attractiveness.



Large effects from subtle manipulations?

There is a simple explanation for the seemingly large effects published all over the
psychological literature

® that works without any real large effects

® but assumes that they are statistical artifacts based on a combination of

low power
AN
selection by significance

= inflated effect

(type M error; Gelman & Carlin, 2014)



Classical inference in a nutshell

® Deciding between two hypotheses about parameter of data-generating model
(Neyman & Pearson, 1933)

Null hypothesis (specific), alternative hypothesis (logical opposite)

— Example: Binomial model, Hy: # = 0.5, H;: @ #0.5

® Possible decision errors
Decision for Hy  Decision for H Conventions
Ho true correct type | error, « ® a=0.05
Hp true | type Il error, correct °* 5<0.2

Decision based on data (p-value)

— If p < «, choose Hy; else retain Hg

Power =1 —f

— Probability of test to detect an effect of a given size



Power function

Power of a test depends on
o effect size
(deviation from Hg)
® sample size n
° o

With effect size, power, and
« fixed, we can calculate n
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High power is a necessary condition for

Difference in male-female birth rate (%)
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Exercise: First steps in simulation

® Generate data from a binomial model using the rbinom() function in R;
try out different values of

~ 1 (10, 500, 2000)
— the parameter 7 (0.5, 0.8, 0.44, 0.515)

and see how this affects the output

® With these data, test different null hypotheses using binom.test ();
these may or may not coincide with the values of 7 used for data generation

® If you repeat data generation and testing, can you usually reject Hgp?
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Power analysis by simulation

Why simulation?

® Simulation is at the heart of statistical inference
® Inference: Compare the data with the output of a statistical model
e If data look different from model output, reject model (or its assumptions)

e Simulation forces us to specify a data model and to attach meaning to its
components

® Model should not be totally unrealistic for those aspects of the world we want to
learn about

12



Power simulation

The steps in general

1. Specify the model including the effect of interest
2. Generate observations from the model

3. Test Hg

4. Repeat

Power is estimated from the proportion of significant test results

13



Specify the model including the effect of interest

(1) Choose statistical model according to its assumptions
® Binomial test — binomial distribution — rbinom()

® t-test — normal distribution — rnorm()

14



Specify the model including the effect of interest
(1) Choose statistical model according to its assumptions
® Binomial test — binomial distribution — rbinom()
® t-test — normal distribution — rnorm()
® .
(2) Fix unknown quantities

e Standard deviations, correlations, ...

¢ Plausible values from the literature (beware of significance filter)
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Specify the model including the effect of interest

(1) Choose statistical model according to its assumptions
® Binomial test — binomial distribution — rbinom()

® t-test — normal distribution — rnorm()

[ ]
(2) Fix unknown quantities
® Standard deviations, correlations, . ..
¢ Plausible values from the literature (beware of significance filter)
(3) Specify the effect of interest
® Not the true effect (else no need to run the study!)
® Not the effect one expects or hopes to find (size of effect is unknown!)
® Never an effect size taken from another study (significance filter!)

® But the biologically or clinically or psychologically “relevant effect one would
regret missing” (Harrell, 2020)
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Power simulation and sample size

N o o B W N =

The steps in pseudo code

Set sample size to n
replicate

{
Draw sample from model with minimum relevant effect
Test null hypothesis

3

Determine proportion of significant results

Sample size calculation

® Sample size n, minimal relevant effect and o must be predetermined
® Adjust n until desired power (0.8 or 0.95) is reached

® To be on the safe side, assume higher variation, less (or more) correlation, and
smaller interesting effects (what results can we expect, if ...)
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Power simulation example

Binomial test
® Birth rates in the general population

51.5% 48.5%
—» corresponds to a male-female sex ratio of 106:100

More examples

® Wickelmaier (2022) includes power simulation examples and R code for many
classical statistical tests
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Example: Birth rates

® Fisher's principle states that the male-female sex ratio is about 1:1

® Plan a study and calculate the sample size necessary to
— detect a deviation from Fisher's principle of 106:100
— with about 80% power

® Check your setup
— Set the effect size to zero; what “power” estimate do you expect to get?

n<- ... # adjust sample size
pval <- replicate(5000, { # replications of experiment
x <- rbinom(1l, size = n, # data-generating model with
prob = 106/(106 + 100)) # minimum relevant effect
binom.test(x, n = n, p = 1/2)$p.value # p-value of test against HO

b
mean(pval < 0.05) # simulated power at alpha =

0.05

17



Example: Birth rates
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Example: Birth rates
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Example: Birth rates

Fisher's principle: Testing against Ho: m = 0.5
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Final thoughts

Statistical tests are no screening procedures

— Significance is not a substitute for relevance
— Nonsignificance does not imply absence of effect

e Often, data are rather uninformative and compatible with many models and
hypotheses

e At the same time, “all models are wrong” (Box, 1976)

® Making data-based decisions using statistical inference requires a confirmatory
setting where a-priori substantive knowledge goes into the power analysis

® When relying on statistical tests outside such a setting, all we do is descriptive
statistics with p-values; this does more harm than good
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P-value

The p-value is the probability of obtaining a test statistic that signals a deviation from
Hp at least as extreme as that observed in the experiment, given Hg is true and its
underlying model holds

https://apps.mathpsy.uni-tuebingen.de/fw/pvalbinom/
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On the role of power

® Vasishth and Gelman (2021)

“the importance of power cannot be stressed enough. Power should be seen as
the ball in a ball game; it is only a very small part of the sport, because there are
many other important components. But the players would look pretty foolish if
they arrive to play on the playing field without the ball. Of course, power is not
the only thing to consider in an experiment; no amount of power will help if the
design is confounded or introduces a bias in some way" (p. 1333)
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Binomial test power simulation
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