Update title in README; rebuild

This commit is contained in:
Nora Wickelmaier 2026-01-09 17:16:31 +01:00
parent d411821974
commit f029510984
9 changed files with 18 additions and 21 deletions

Binary file not shown.

View File

@ -35,7 +35,7 @@ dat <- data.frame(
A = factor(rep(1:2, each = n/2), labels = c("low", "high")), A = factor(rep(1:2, each = n/2), labels = c("low", "high")),
B = factor(rep(rep(1:2, each = n/4), 2), labels = c("low", "high")) B = factor(rep(rep(1:2, each = n/4), 2), labels = c("low", "high"))
) )
X <- model.matrix(~ A*B, dat) X <- model.matrix(~ A * B, dat)
unique(X) unique(X)
``` ```
@ -73,7 +73,7 @@ boxplot(t(out))
``` r ``` r
pval <- replicate(2000, { pval <- replicate(2000, {
y <- means + rnorm(n, sd = 10) y <- means + rnorm(n, sd = 10)
m <- aov(y ~ A*B, dat) m <- aov(y ~ A * B, dat)
summary(m)[[1]]$"Pr(>F)"[3] # test of interaction summary(m)[[1]]$"Pr(>F)"[3] # test of interaction
}) })
mean(pval < 0.05) mean(pval < 0.05)

View File

@ -4,9 +4,7 @@ measurements
## MASS anorexia data ## MASS anorexia data
1. Analyze the original data: Data preparation
- In R, see ?MASS::anorexia
- Data preparation
``` r ``` r
data(anorexia, package = "MASS") data(anorexia, package = "MASS")
@ -20,11 +18,13 @@ lattice::xyplot(Postwt ~ Prewt, dat, groups = Treat,
type = c("g", "r", "p"), auto.key = TRUE) type = c("g", "r", "p"), auto.key = TRUE)
``` ```
- Estimate the average treatment effect (ATE) for FT relative to CBT. 1. Analyze the original data:
- What is the 95% CI for the ATE? - In R, see ?MASS::anorexia
- What are the pre- and post-weight means for the two groups? - Estimate the average treatment effect (ATE) for FT relative to
- What are the baseline-adjusted means for the two groups? CBT.
- What is the 95% CI for the ATE?
- What are the pre- and post-weight means for the two groups?
- What are the baseline-adjusted means for the two groups?
2. Run a power simulation for a replication study: 2. Run a power simulation for a replication study:
- Draw plausible pre-weights. - Draw plausible pre-weights.
- Specify the minimum relevant effect. - Specify the minimum relevant effect.
@ -41,5 +41,3 @@ lattice::xyplot(Postwt ~ Prewt, dat, groups = Treat,
- the R code, output, and plots (if any) - the R code, output, and plots (if any)
Render the R or Rmd file to HTML. Render the R or Rmd file to HTML.
### Reference

Binary file not shown.

Binary file not shown.

View File

@ -3,8 +3,8 @@ Power for mixed-effects models
Last modified: 2026-01-09 Last modified: 2026-01-09
``` r ``` r
library(lattice) library("lattice")
library(lme4) library("lme4")
``` ```
# Reanalysis # Reanalysis

View File

@ -8,8 +8,8 @@ Exercises: Data simulation for crossed random-effects models
“manually” “manually”
``` r ``` r
library(lattice) library("lattice")
library(lme4) library("lme4")
#--------------- (1) Create data frame ---------------------------------------- #--------------- (1) Create data frame ----------------------------------------
datsim <- expand.grid(subject = factor(c("s1" , "s2" , "s3" )), datsim <- expand.grid(subject = factor(c("s1" , "s2" , "s3" )),
@ -40,9 +40,9 @@ e <- rnorm(18, mean = 0, sd = se)
sig <- matrix(c(sy0^2, ry * sy0 * sy1, ry * sy0 * sy1, sy1^2), 2, 2) sig <- matrix(c(sy0^2, ry * sy0 * sy1, ry * sy0 * sy1, sy1^2), 2, 2)
y01 <- MASS::mvrnorm(3, mu = c(0, 0), Sigma = sig) y01 <- MASS::mvrnorm(3, mu = c(0, 0), Sigma = sig)
y0 <- rep(y01[,1], each = 6) y0 <- rep(y01[,1], each = 6)
y1 <- rep(c(0, y01[1,2], y1 <- rep(c(0, y01[1, 2],
0, y01[2,2], 0, y01[2, 2],
0, y01[3,2]), each = 3) 0, y01[3, 2]), each = 3)
datsim$rt <- b0 + b1 + w + y0 + y1 + e datsim$rt <- b0 + b1 + w + y0 + y1 + e

Binary file not shown.

View File

@ -1,6 +1,5 @@
Power simulations Methods Workshop WS 2025/26: Power simulations
================ ================
Nora Wickelmaier
January, 21-22, 2026 January, 21-22, 2026
## Schedule ## Schedule