mtt_haum/code/10_validation.R

182 lines
7.0 KiB
R

# 11_validation.R
#
# content: (1) Load data
# (2) Extract characteristics for cases
# (3) Select features for navigation behavior
# (4) Clustering
# (5) Fit tree
#
# input: results/event_logfiles_2024-02-21_16-07-33.csv
# output: --
#
# last mod: 2024-03-22
# setwd("C:/Users/nwickelmaier/Nextcloud/Documents/MDS/2023ss/60100_master_thesis/analysis/code")
source("R_helpers.R")
#--------------- (1) Read data ---------------
load("results/eventlogs_pre-corona_cleaned.RData")
# Select one year to handle number of cases
dat <- dat[as.Date(dat$date.start) > "2017-12-31" &
as.Date(dat$date.start) < "2019-01-01", ]
#--------------- (2) Extract characteristics for cases ---------------
datcase18 <- aggregate(cbind(distance, scaleSize, rotationDegree) ~
case, dat, function(x) mean(x, na.rm = TRUE), na.action = NULL)
datcase18$length <- aggregate(item ~ case, dat, length)$item
eventtab <- aggregate(event ~ case, dat, table)["case"]
eventtab$nmove <- aggregate(event ~ case, dat, table)$event[, "move"]
eventtab$nflipCard <- aggregate(event ~ case, dat, table)$event[, "flipCard"]
eventtab$nopenTopic <- aggregate(event ~ case, dat, table)$event[, "openTopic"]
eventtab$nopenPopup <- aggregate(event ~ case, dat, table)$event[, "openPopup"]
datcase18 <- datcase18 |>
merge(eventtab, by = "case", all = TRUE)
rm(eventtab)
datcase18$nitems <- aggregate(item ~ case, dat, function(x)
length(unique(x)), na.action = NULL)$item
datcase18$npaths <- aggregate(path ~ case, dat, function(x)
length(unique(x)), na.action = NULL)$path
dat_split <- split(dat, ~ case)
dat_list <- pbapply::pblapply(dat_split, time_minmax_ms)
dat_minmax <- dplyr::bind_rows(dat_list)
datcase18$min_time <- aggregate(min_time ~ case, dat_minmax, unique)$min_time
datcase18$max_time <- aggregate(max_time ~ case, dat_minmax, unique)$max_time
datcase18$duration <- datcase18$max_time - datcase18$min_time
datcase18$min_time <- NULL
datcase18$max_time <- NULL
artworks <- unique(dat$item)[!unique(dat$item) %in% c("501", "502", "503")]
datcase18$infocardOnly <- pbapply::pbsapply(dat_split, check_infocards, artworks = artworks)
# Clean up NAs
datcase18$distance <- ifelse(is.na(datcase18$distance), 0, datcase18$distance)
datcase18$scaleSize <- ifelse(is.na(datcase18$scaleSize), 1, datcase18$scaleSize)
datcase18$rotationDegree <- ifelse(is.na(datcase18$rotationDegree), 0, datcase18$rotationDegree)
#--------------- (3) Select features for navigation behavior ---------------
dattree18 <- data.frame(case = datcase18$case,
PropItems = datcase18$nitems / length(unique(dat$item)),
SearchInfo = (datcase18$nopenTopic +
datcase18$nopenPopup) / datcase18$length,
PropMoves = datcase18$nmove / datcase18$length,
PathLinearity = datcase18$nitems / datcase18$npaths,
Singularity = datcase18$npaths / datcase18$length
)
# centrality <- pbapply::pbsapply(dattree18$case, get_centrality, data = dat)
# save(centrality, file = "results/centrality_2018.RData")
load("results/centrality_2018.RData")
dattree18$BetweenCentrality <- centrality
# Average duration per item
dat_split <- split(dat[, c("item", "case", "path", "timeMs.start", "timeMs.stop")], ~ path)
dat_list <- pbapply::pblapply(dat_split, time_minmax_ms)
dat_minmax <- dplyr::bind_rows(dat_list)
tmp <- aggregate(min_time ~ path, dat_minmax, unique)
tmp$max_time <- aggregate(max_time ~ path, dat_minmax, unique, na.action = NULL)$max_time
tmp$duration <- tmp$max_time - tmp$min_time
tmp$case <- aggregate(case ~ path, dat_minmax, unique)$case
dattree18$AvDurItem <- aggregate(duration ~ case, tmp, mean)$duration
rm(tmp)
# Indicator variable if table was used as info terminal only
dattree18$InfocardOnly <- factor(datcase18$infocardOnly, levels = 0:1,
labels = c("no", "yes"))
# Add pattern
dattree18$Pattern <- "Dispersion"
dattree18$Pattern <- ifelse(dattree18$PathLinearity > 0.8, "Scholar",
dattree18$Pattern)
dattree18$Pattern <- ifelse(dattree18$PathLinearity <= 0.8 &
dattree18$BetweenCentrality >= 0.5, "Star",
dattree18$Pattern)
dattree18$Pattern <- factor(dattree18$Pattern)
dattree18$AvDurItemNorm <- normalize(dattree18$AvDurItem)
#--------------- (4) Clustering ---------------
df <- dattree18[, c("PropItems", "SearchInfo", "PropMoves", "AvDurItemNorm",
"Pattern", "InfocardOnly")]
dist_mat18 <- cluster::daisy(df, metric = "gower")
coor_3d_18 <- smacof::mds(dist_mat18, ndim = 3, type = "ordinal")$conf
coor_2d_18 <- coor_3d_18[, 1:2]
plot(coor_2d_18)
rgl::plot3d(coor_3d_18)
hc18 <- cluster::agnes(dist_mat18, method = "ward")
k <- 5
mycols <- c("#91C86E", "#FF6900", "#3CB4DC", "#78004B", "#434F4F")
cluster18 <- cutree(as.hclust(hc18), k = k)
table(cluster18)
plot(coor_2d_18, col = mycols[cluster18], pch = 16)
legend("topleft", c("Searching", "Exploring", "Scanning", "Flitting", "Info"),
col = mycols, bty = "n", pch = 16)
rgl::plot3d(coor_3d_18, col = mycols[cluster18])
print(ftable(xtabs( ~ InfocardOnly + Pattern + cluster18, dattree18)), zero = "-")
aggregate(. ~ cluster18, df, mean)
aggregate(. ~ cluster18, dattree18[, -1], mean)
save(coor_2d_18, coor_3d_18, cluster18, dattree18, dist_mat18, hc18,
file = "../../thesis/figures/data/clustering_cases_2018.RData")
#--------------- (5) Fit tree ---------------
c1 <- rpart::rpart(as.factor(cluster18) ~ ., data = dattree18[, c("PropMoves",
"PropItems",
"SearchInfo",
"AvDurItem",
"Pattern",
"InfocardOnly")],
method = "class")
plot(partykit::as.party(c1), tp_args = list(fill = mycols, col = mycols))
## Load data
load("../../thesis/figures/data/clustering_cases.RData")
c19 <- rpart::rpart(as.factor(cluster) ~ ., data = dattree[, c("PropMoves",
"PropItems",
"SearchInfo",
"AvDurItem",
"Pattern",
"InfocardOnly")],
method = "class")
cl18 <- rpart:::predict.rpart(c1, type = "class", newdata = dattree18)
cl18 <- factor(cl18, labels = c("Searching", "Exploring", "Scanning", "Flitting", "Info"))
cl19 <- rpart:::predict.rpart(c19, type = "class", newdata = dattree18)
cl19 <- factor(cl19, labels = c("Scanning", "Exploring", "Flitting", "Searching", "Info"))
xtabs( ~ cl18 + cl19)