182 lines
7.0 KiB
R
182 lines
7.0 KiB
R
# 11_validation.R
|
|
#
|
|
# content: (1) Load data
|
|
# (2) Extract characteristics for cases
|
|
# (3) Select features for navigation behavior
|
|
# (4) Clustering
|
|
# (5) Fit tree
|
|
#
|
|
# input: results/event_logfiles_2024-02-21_16-07-33.csv
|
|
# output: --
|
|
#
|
|
# last mod: 2024-03-22
|
|
|
|
# setwd("C:/Users/nwickelmaier/Nextcloud/Documents/MDS/2023ss/60100_master_thesis/analysis/code")
|
|
|
|
source("R_helpers.R")
|
|
|
|
#--------------- (1) Read data ---------------
|
|
|
|
load("results/eventlogs_pre-corona_cleaned.RData")
|
|
|
|
# Select one year to handle number of cases
|
|
dat <- dat[as.Date(dat$date.start) > "2017-12-31" &
|
|
as.Date(dat$date.start) < "2019-01-01", ]
|
|
|
|
#--------------- (2) Extract characteristics for cases ---------------
|
|
|
|
datcase18 <- aggregate(cbind(distance, scaleSize, rotationDegree) ~
|
|
case, dat, function(x) mean(x, na.rm = TRUE), na.action = NULL)
|
|
|
|
datcase18$length <- aggregate(item ~ case, dat, length)$item
|
|
|
|
eventtab <- aggregate(event ~ case, dat, table)["case"]
|
|
eventtab$nmove <- aggregate(event ~ case, dat, table)$event[, "move"]
|
|
eventtab$nflipCard <- aggregate(event ~ case, dat, table)$event[, "flipCard"]
|
|
eventtab$nopenTopic <- aggregate(event ~ case, dat, table)$event[, "openTopic"]
|
|
eventtab$nopenPopup <- aggregate(event ~ case, dat, table)$event[, "openPopup"]
|
|
|
|
datcase18 <- datcase18 |>
|
|
merge(eventtab, by = "case", all = TRUE)
|
|
|
|
rm(eventtab)
|
|
|
|
datcase18$nitems <- aggregate(item ~ case, dat, function(x)
|
|
length(unique(x)), na.action = NULL)$item
|
|
datcase18$npaths <- aggregate(path ~ case, dat, function(x)
|
|
length(unique(x)), na.action = NULL)$path
|
|
|
|
dat_split <- split(dat, ~ case)
|
|
dat_list <- pbapply::pblapply(dat_split, time_minmax_ms)
|
|
dat_minmax <- dplyr::bind_rows(dat_list)
|
|
|
|
datcase18$min_time <- aggregate(min_time ~ case, dat_minmax, unique)$min_time
|
|
datcase18$max_time <- aggregate(max_time ~ case, dat_minmax, unique)$max_time
|
|
|
|
datcase18$duration <- datcase18$max_time - datcase18$min_time
|
|
datcase18$min_time <- NULL
|
|
datcase18$max_time <- NULL
|
|
|
|
artworks <- unique(dat$item)[!unique(dat$item) %in% c("501", "502", "503")]
|
|
datcase18$infocardOnly <- pbapply::pbsapply(dat_split, check_infocards, artworks = artworks)
|
|
|
|
# Clean up NAs
|
|
datcase18$distance <- ifelse(is.na(datcase18$distance), 0, datcase18$distance)
|
|
datcase18$scaleSize <- ifelse(is.na(datcase18$scaleSize), 1, datcase18$scaleSize)
|
|
datcase18$rotationDegree <- ifelse(is.na(datcase18$rotationDegree), 0, datcase18$rotationDegree)
|
|
|
|
#--------------- (3) Select features for navigation behavior ---------------
|
|
|
|
dattree18 <- data.frame(case = datcase18$case,
|
|
PropItems = datcase18$nitems / length(unique(dat$item)),
|
|
SearchInfo = (datcase18$nopenTopic +
|
|
datcase18$nopenPopup) / datcase18$length,
|
|
PropMoves = datcase18$nmove / datcase18$length,
|
|
PathLinearity = datcase18$nitems / datcase18$npaths,
|
|
Singularity = datcase18$npaths / datcase18$length
|
|
)
|
|
|
|
# centrality <- pbapply::pbsapply(dattree18$case, get_centrality, data = dat)
|
|
# save(centrality, file = "results/centrality_2018.RData")
|
|
load("results/centrality_2018.RData")
|
|
|
|
dattree18$BetweenCentrality <- centrality
|
|
|
|
# Average duration per item
|
|
dat_split <- split(dat[, c("item", "case", "path", "timeMs.start", "timeMs.stop")], ~ path)
|
|
dat_list <- pbapply::pblapply(dat_split, time_minmax_ms)
|
|
dat_minmax <- dplyr::bind_rows(dat_list)
|
|
|
|
tmp <- aggregate(min_time ~ path, dat_minmax, unique)
|
|
tmp$max_time <- aggregate(max_time ~ path, dat_minmax, unique, na.action = NULL)$max_time
|
|
tmp$duration <- tmp$max_time - tmp$min_time
|
|
tmp$case <- aggregate(case ~ path, dat_minmax, unique)$case
|
|
|
|
dattree18$AvDurItem <- aggregate(duration ~ case, tmp, mean)$duration
|
|
|
|
rm(tmp)
|
|
|
|
# Indicator variable if table was used as info terminal only
|
|
dattree18$InfocardOnly <- factor(datcase18$infocardOnly, levels = 0:1,
|
|
labels = c("no", "yes"))
|
|
|
|
# Add pattern
|
|
dattree18$Pattern <- "Dispersion"
|
|
dattree18$Pattern <- ifelse(dattree18$PathLinearity > 0.8, "Scholar",
|
|
dattree18$Pattern)
|
|
dattree18$Pattern <- ifelse(dattree18$PathLinearity <= 0.8 &
|
|
dattree18$BetweenCentrality >= 0.5, "Star",
|
|
dattree18$Pattern)
|
|
dattree18$Pattern <- factor(dattree18$Pattern)
|
|
|
|
dattree18$AvDurItemNorm <- normalize(dattree18$AvDurItem)
|
|
|
|
#--------------- (4) Clustering ---------------
|
|
|
|
df <- dattree18[, c("PropItems", "SearchInfo", "PropMoves", "AvDurItemNorm",
|
|
"Pattern", "InfocardOnly")]
|
|
|
|
dist_mat18 <- cluster::daisy(df, metric = "gower")
|
|
|
|
coor_3d_18 <- smacof::mds(dist_mat18, ndim = 3, type = "ordinal")$conf
|
|
coor_2d_18 <- coor_3d_18[, 1:2]
|
|
|
|
plot(coor_2d_18)
|
|
rgl::plot3d(coor_3d_18)
|
|
|
|
hc18 <- cluster::agnes(dist_mat18, method = "ward")
|
|
|
|
k <- 5
|
|
|
|
mycols <- c("#91C86E", "#FF6900", "#3CB4DC", "#78004B", "#434F4F")
|
|
|
|
cluster18 <- cutree(as.hclust(hc18), k = k)
|
|
|
|
table(cluster18)
|
|
|
|
plot(coor_2d_18, col = mycols[cluster18], pch = 16)
|
|
legend("topleft", c("Searching", "Exploring", "Scanning", "Flitting", "Info"),
|
|
col = mycols, bty = "n", pch = 16)
|
|
rgl::plot3d(coor_3d_18, col = mycols[cluster18])
|
|
|
|
print(ftable(xtabs( ~ InfocardOnly + Pattern + cluster18, dattree18)), zero = "-")
|
|
|
|
aggregate(. ~ cluster18, df, mean)
|
|
aggregate(. ~ cluster18, dattree18[, -1], mean)
|
|
|
|
save(coor_2d_18, coor_3d_18, cluster18, dattree18, dist_mat18, hc18,
|
|
file = "../../thesis/figures/data/clustering_cases_2018.RData")
|
|
|
|
#--------------- (5) Fit tree ---------------
|
|
|
|
c1 <- rpart::rpart(as.factor(cluster18) ~ ., data = dattree18[, c("PropMoves",
|
|
"PropItems",
|
|
"SearchInfo",
|
|
"AvDurItem",
|
|
"Pattern",
|
|
"InfocardOnly")],
|
|
method = "class")
|
|
|
|
plot(partykit::as.party(c1), tp_args = list(fill = mycols, col = mycols))
|
|
|
|
|
|
## Load data
|
|
load("../../thesis/figures/data/clustering_cases.RData")
|
|
|
|
c19 <- rpart::rpart(as.factor(cluster) ~ ., data = dattree[, c("PropMoves",
|
|
"PropItems",
|
|
"SearchInfo",
|
|
"AvDurItem",
|
|
"Pattern",
|
|
"InfocardOnly")],
|
|
method = "class")
|
|
|
|
cl18 <- rpart:::predict.rpart(c1, type = "class", newdata = dattree18)
|
|
cl18 <- factor(cl18, labels = c("Searching", "Exploring", "Scanning", "Flitting", "Info"))
|
|
|
|
cl19 <- rpart:::predict.rpart(c19, type = "class", newdata = dattree18)
|
|
cl19 <- factor(cl19, labels = c("Scanning", "Exploring", "Flitting", "Searching", "Info"))
|
|
|
|
xtabs( ~ cl18 + cl19)
|
|
|