From f9f80864868cefde858d27a51b8366ac6bf9d447 Mon Sep 17 00:00:00 2001 From: nwickel Date: Wed, 7 Feb 2024 13:26:35 +0100 Subject: [PATCH] Worked on variants in user navigation --- code/09_user-navigation.R | 84 ++++++++++++++++----------------------- 1 file changed, 34 insertions(+), 50 deletions(-) diff --git a/code/09_user-navigation.R b/code/09_user-navigation.R index 1c5f0e5..e504896 100644 --- a/code/09_user-navigation.R +++ b/code/09_user-navigation.R @@ -1,14 +1,15 @@ -# 09_case-clustering.R +# 09_user_navigation.R # # content: (1) Read data # (1.1) Read log event data # (1.2) Extract additional infos for clustering # (2) Clustering +# (3) Investigate variants # # input: results/haum/event_logfiles_2024-01-18_09-58-52.csv # output: results/haum/event_logfiles_pre-corona_with-clusters_cases.csv # -# last mod: 2024-02-04 +# last mod: 2024-02-07 # setwd("C:/Users/nwickelmaier/Nextcloud/Documents/MDS/2023ss/60100_master_thesis/analysis/code") @@ -58,7 +59,7 @@ datcase$npaths <- aggregate(path ~ case, dat, function(x) # datcase$ntopics <- aggregate(topic ~ case, dat, # function(x) ifelse(all(is.na(x)), NA, length(unique(na.omit(x)))), # na.action = NULL)$topic -# +# datcase$vacation <- aggregate(vacation ~ case, dat, function(x) ifelse(all(is.na(x)), 0, 1), na.action = NULL)$vacation @@ -79,20 +80,16 @@ datcase <- na.omit(datcase) df <- datcase[, c("duration", "distance", "scaleSize", "rotationDegree", "length", "nitems", "npaths")] |> scale() -df <- cbind(df, datcase[, c("vacation", "holiday", "weekend", "morning")]) +#df <- cbind(df, datcase[, c("vacation", "holiday", "weekend", "morning")]) mat <- dist(df) hc <- hclust(mat, method = "ward.D2") -hc <- hclust(mat) -grp <- cutree(hc, k = 3) +grp <- cutree(hc, k = 6) datcase$grp <- grp table(grp) -# k1 <- kmeans(mat, 4) -# datcase$kcluster <- k1$cluster - fviz_cluster(list(data = df, cluster = grp), palette = c("#78004B", "#000000", "#3CB4DC", "#91C86E", "#FF6900", "#434F4F"), @@ -123,7 +120,8 @@ write.table(res, quote = FALSE, row.names = FALSE) -# Look at variants +#--------------- (2) Investigate variants --------------- + res$start <- res$date.start res$complete <- res$date.stop @@ -133,7 +131,7 @@ alog <- activitylog(res, resource_id = "path", timestamps = c("start", "complete")) -trace_explorer(alog, n_traces = 30) +trace_explorer(alog, n_traces = 25) # --> sequences of artworks are just too rare tr <- traces(alog) @@ -145,22 +143,19 @@ tr[trace_varied > 1, ] table(tr[trace_varied > 2, "absolute_frequency"]) table(tr[trace_varied > 3, "absolute_frequency"]) -longest_case <- datcase[datcase$length == max(datcase$length), "case"] - -alog_often <- activitylog(res[res$case == longest_case, ], - case_id = "case", - activity_id = "item", - resource_id = "path", - timestamps = c("start", "complete")) - -process_map(alog_often) +summary(tr$absolute_frequency) +vioplot::vioplot(tr$absolute_frequency) # Power law for frequencies of traces tab <- table(tr$absolute_frequency) x <- as.numeric(tab) y <- as.numeric(names(tab)) -plot(log(y) ~ log(x)) -abline(lm(log(y) ~ log(x))) + +plot(x, y, log = "xy") +p1 <- lm(log(y) ~ log(x)) +pre <- exp(coef(p1)[1]) * x^coef(p1)[2] +lines(x, pre) + # Look at individual traces as examples tr[trace_varied == 5 & trace_length > 50, ] @@ -169,17 +164,32 @@ datcase[datcase$nitems == 5 & datcase$length > 50,] sapply(datcase[, -c(1, 9)], median) -ex <- datcase[datcase$nitems == 10 & datcase$length == 30,] +#ex <- datcase[datcase$nitems == 4 & datcase$length == 15,] +ex <- datcase[datcase$nitems == 5,] +ex <- ex[sample(1:nrow(ex), 20), ] # --> pretty randomly chosen... TODO: +case_ids <- NULL + for (case in ex$case) { + if ("080" %in% res$item[res$case == case] | "503" %in% res$item[res$case == case]) { + case_ids <- c(case_ids, TRUE) + } else { + case_ids <- c(case_ids, FALSE) + } +} + +cases <- ex$case[case_ids] + + +for (case in cases) { alog <- activitylog(res[res$case == case, ], case_id = "case", activity_id = "item", resource_id = "path", timestamps = c("start", "complete")) - + dfg <- process_map(alog, type_nodes = frequency("absolute", color_scale = "Greys"), type_edges = frequency("absolute", color_edges = "#FF6900"), @@ -193,29 +203,3 @@ for (case in ex$case) { } -## --> not interesting! -# Just "flipCard" -res_case <- res[!duplicated(res[, c("case", "path")]), ] - -for (case in ex$case) { - - alog <- activitylog(res_case[res_case$case == case, ], - case_id = "case", - activity_id = "item", - resource_id = "path", - timestamps = c("start", "complete")) - - dfg <- process_map(alog, - type_nodes = frequency("absolute", color_scale = "Greys"), - type_edges = frequency("absolute", color_edges = "#FF6900"), - rankdir = "LR", - render = FALSE) - export_map(dfg, - file_name = paste0("results/processmaps/dfg_example_cases_", case, "_fc_R.pdf"), - file_type = "pdf", - title = paste("Single case", case)) - - -} - -