Added python script for PM for case clusters (again)
This commit is contained in:
parent
609e103018
commit
dc489b4aa9
52
code/13_pm-case-clusters.py
Normal file
52
code/13_pm-case-clusters.py
Normal file
@ -0,0 +1,52 @@
|
|||||||
|
# 13_pm-case-clusters.py
|
||||||
|
#
|
||||||
|
# content: (1) Load data and create event log
|
||||||
|
# (2) Evaluation for clusters
|
||||||
|
#
|
||||||
|
# input: results/eventlogs_2019_case-clusters.csv
|
||||||
|
# output: results/eval_case_clusters.csv
|
||||||
|
#
|
||||||
|
# last mod: 2024-04-02
|
||||||
|
|
||||||
|
import pm4py
|
||||||
|
import pandas as pd
|
||||||
|
|
||||||
|
from python_helpers import eval_pm
|
||||||
|
|
||||||
|
#--------------- (1) Load data and create event logs ---------------
|
||||||
|
|
||||||
|
dat = pd.read_csv("results/eventlogs_2019_case-clusters.csv", sep = ";")
|
||||||
|
|
||||||
|
event_log = pm4py.format_dataframe(dat,
|
||||||
|
case_id = "case",
|
||||||
|
activity_key = "item",
|
||||||
|
timestamp_key = "date.start")
|
||||||
|
|
||||||
|
#--------------- (2) Evaluation for clusters ---------------
|
||||||
|
|
||||||
|
thresholds = [0.1, 0.2, 0.3, 0.4, 0.5]
|
||||||
|
|
||||||
|
for nt in thresholds:
|
||||||
|
|
||||||
|
net, im, fm = pm4py.discover_petri_net_inductive(event_log, noise_threshold = nt)
|
||||||
|
|
||||||
|
eval = pd.DataFrame(eval_pm(event_log, net, im, fm)).T
|
||||||
|
eval.columns = ["fitness", "generalization", "simplicity"]
|
||||||
|
#eval.columns = ["fitness", "precision", "generalization", "simplicity"]
|
||||||
|
|
||||||
|
# Merge clusters into data frame
|
||||||
|
for cluster in [1, 2, 3, 4, 5]:
|
||||||
|
log_clst = pm4py.filter_event_attribute_values(event_log, "cluster", [cluster])
|
||||||
|
net_clst, im_clst, fm_clst = pm4py.discover_petri_net_inductive(log_clst, noise_threshold = nt)
|
||||||
|
eval_clst = pd.DataFrame(eval_pm(log_clst, net_clst, im_clst, fm_clst)).T
|
||||||
|
eval_clst.columns = ["fitness", "generalization", "simplicity"]
|
||||||
|
#eval_clst.columns = ["fitness", "precision", "generalization", "simplicity"]
|
||||||
|
eval = pd.concat([eval, eval_clst])
|
||||||
|
# Export process maps
|
||||||
|
bpmn = pm4py.convert.convert_to_bpmn(net_clst, im_clst, fm_clst)
|
||||||
|
pm4py.vis.save_vis_bpmn(bpmn, "results/processmaps/bpmn_cluster" + str(cluster) +
|
||||||
|
"_cases" + str(int(nt*10)).zfill(2) + ".png")
|
||||||
|
|
||||||
|
eval.index = ["Complete", "Cluster 1", "Cluster 2", "Cluster 3", "Cluster 4", "Cluster 5"]
|
||||||
|
eval.to_csv("results/eval_case_clusters_" + str(int(nt*10)).zfill(2) + ".csv", sep = ";")
|
||||||
|
|
@ -5,12 +5,17 @@ import pandas as pd
|
|||||||
|
|
||||||
def eval_pm(data, net, initial_marking, final_marking):
|
def eval_pm(data, net, initial_marking, final_marking):
|
||||||
"""Caculate fitness, precision, generalizability, and simplicity for petri net"""
|
"""Caculate fitness, precision, generalizability, and simplicity for petri net"""
|
||||||
|
print("Fitness is calculated")
|
||||||
fitness = pm4py.fitness_token_based_replay(data, net, initial_marking, final_marking)
|
fitness = pm4py.fitness_token_based_replay(data, net, initial_marking, final_marking)
|
||||||
precisison = pm4py.precision_token_based_replay(data, net, initial_marking, final_marking)
|
#print("Precision is calculated")
|
||||||
|
#precisison = pm4py.precision_token_based_replay(data, net, initial_marking, final_marking)
|
||||||
|
print("Generalizability is calculated")
|
||||||
generalizability = pm4py.algo.evaluation.generalization.algorithm.apply(data, net,
|
generalizability = pm4py.algo.evaluation.generalization.algorithm.apply(data, net,
|
||||||
initial_marking, final_marking)
|
initial_marking, final_marking)
|
||||||
|
print("Simplicity is calculated")
|
||||||
simplicity = pm4py.algo.evaluation.simplicity.algorithm.apply(net)
|
simplicity = pm4py.algo.evaluation.simplicity.algorithm.apply(net)
|
||||||
return [fitness['average_trace_fitness'], precisison, generalizability, simplicity]
|
#return [fitness['average_trace_fitness'], precisison, generalizability, simplicity]
|
||||||
|
return [fitness['average_trace_fitness'], generalizability, simplicity]
|
||||||
|
|
||||||
|
|
||||||
def pn_infos(log, colname, filter):
|
def pn_infos(log, colname, filter):
|
||||||
|
Loading…
Reference in New Issue
Block a user