Working on finalizing the clustering

This commit is contained in:
Nora Wickelmaier 2024-03-09 17:22:46 +01:00
parent 5cc2135c4a
commit b29790dfc1
5 changed files with 72 additions and 39 deletions

View File

@ -103,11 +103,6 @@ fp_visualizer.view(gviz)
efg_graph = pm4py.discover_eventually_follows_graph(event_log)
## Directly-follows graph
dfg, start_activities, end_activities = pm4py.discover_dfg(event_log)
pm4py.view_dfg(dfg, start_activities, end_activities)
pm4py.save_vis_dfg(dfg, start_activities, end_activities, "results/processmaps/dfg_complete_python.png")
## Fitting different miners
eval = pd.DataFrame(columns = ["fitness", "precision", "generalizability",
@ -131,6 +126,11 @@ for miner in ["conformative", "alpha", "heuristics", "inductive", "ilp"]:
eval_clean.to_csv("results/eval_all-miners_clean.csv", sep = ";")
## Directly-follows graph
dfg, start_activities, end_activities = pm4py.discover_dfg(event_log_clean)
pm4py.view_dfg(dfg, start_activities, end_activities)
pm4py.save_vis_dfg(dfg, start_activities, end_activities, "results/processmaps/dfg_complete_python.png")
## Export petri nets
pm4py.vis.save_vis_petri_net(basenet, initial_marking, final_marking, "results/processmaps/petrinet_conformative.png")
h_net, h_im, h_fm = pm4py.discover_petri_net_heuristics(event_log_clean)

View File

@ -2,7 +2,8 @@
#
# content: (1) Look at broken trace
# (2) Function to find broken traces
# (3) Export data frame for analyses
# (3) DFG for complete data
# (4) Export data frame for analyses
#
# input: results/haum/event_logfiles_2024-02-21_16-07-33.csv
# results/haum/raw_logfiles_2024-02-21_16-07-33.csv
@ -62,7 +63,33 @@ check <- check_traces(tmp)
check[check$check, ]
#--------------- (3) Export data frame for analyses ---------------
#--------------- (3) DFG for complete data ---------------
tmp <- datlogs[datlogs$path != 106098, ]
tmp$start <- tmp$date.start
tmp$complete <- tmp$date.stop
alog <- bupaR::activitylog(tmp,
case_id = "path",
activity_id = "event",
resource_id = "item",
timestamps = c("start", "complete"))
dfg <- processmapR::process_map(alog,
type_nodes = processmapR::frequency("relative", color_scale = "Greys"),
sec_nodes = processmapR::frequency("absolute"),
type_edges = processmapR::frequency("relative", color_edges = "#FF6900"),
sec_edges = processmapR::frequency("absolute"),
rankdir = "LR",
render = FALSE)
processmapR::export_map(dfg,
file_name = paste0("results/processmaps/dfg_complete_R.pdf"),
file_type = "pdf")
rm(tmp)
#--------------- (4) Export data frame for analyses ---------------
datlogs$event <- factor(datlogs$event, levels = c("move", "flipCard",
"openTopic",

View File

@ -10,6 +10,8 @@
# input: results/haum/eventlogs_pre-corona_cleaned.RData
# results/haum/pn_infos_items.csv
# output: results/haum/eventlogs_pre-corona_item-clusters.csv
# results/figures/dendrogram_items.pdf
# results/figures/clustering_items.pdf
# results/figures/clustering_artworks.pdf
# results/figures/clustering_artworks.png
#
@ -85,7 +87,7 @@ factoextra::fviz_nbclust(df, FUNcluster = factoextra::hcut, method = "silhouette
gap_stat <- cluster::clusGap(df, FUNcluster = factoextra::hcut,
hc_func = "agnes", hc_method = "ward",
K.max = 10)
K.max = 15)
factoextra::fviz_gap_stat(gap_stat)
k <- 6 # number of clusters
@ -94,23 +96,36 @@ mycols <- c("#434F4F", "#78004B", "#FF6900", "#3CB4DC", "#91C86E", "Black")
cluster <- cutree(hc, k = k)
pdf("results/figures/dendrogram_items.pdf", width = 6.5, height = 5.5, pointsize = 10)
factoextra::fviz_dend(hc, k = k,
cex = 0.5,
k_colors = mycols,
#type = "phylogenic",
rect = TRUE
rect = TRUE,
main = "",
ylab = ""
#ggtheme = ggplot2::theme_bw()
)
dev.off()
pdf("results/figures/clustering_items.pdf", width = 6.5, height = 5.5, pointsize = 10)
factoextra::fviz_cluster(list(data = df, cluster = cluster),
palette = mycols,
ellipse.type = "convex",
repel = TRUE,
show.clust.cent = FALSE,
main = "",
ggtheme = ggplot2::theme_bw())
aggregate(cbind(duration, distance, scaleSize , rotationDegree, npaths,
ncases, nmoves, nflipCard, nopenTopic, nopenPopup) ~ cluster,
datitem, mean)
dev.off()
aggregate(cbind(precision, generalizability, nvariants, duration, distance,
scaleSize , rotationDegree, npaths, ncases, nmoves,
nflipCard, nopenTopic, nopenPopup) ~ cluster, datitem,
mean)
aggregate(cbind(duration, distance, scaleSize , rotationDegree, npaths,
ncases, nmoves, nflipCard, nopenTopic, nopenPopup) ~ cluster,

View File

@ -171,7 +171,7 @@ dattree$AvDurItemNorm <- normalize(dattree$AvDurItem)
#--------------- (4) Export data frames ---------------
save(datcase, dattree, file = "results/haum/dataframes_case_2019.RData")
save(dat, datcase, dattree, file = "results/haum/dataframes_case_2019.RData")
write.table(datcase,
file = "results/haum/datcase.csv",

View File

@ -27,25 +27,24 @@ summary(df)
dist_mat <- cluster::daisy(df, metric = "gower")
# "Flatten" with MDS
# coor_2d <- as.data.frame(cmdscale(dist_mat, k = 2))
# coor_3d <- as.data.frame(cmdscale(dist_mat, k = 3))
# coor_2d <- prcomp(df)$x[, 1:2]
# coor_3d <- prcomp(df)$x[, 1:3]
coor_2d <- smacof::mds(dist_mat, ndim = 2, type = "ordinal")$conf
coor_3d <- smacof::mds(dist_mat, ndim = 2, type = "ordinal")$conf
coor_3d <- smacof::mds(dist_mat, ndim = 3, type = "ordinal")$conf
coor_2d <- coor_3d[, 1:2]
plot(coor_2d)
rgl::plot3d(coor_3d)
# method <- c(average = "average", single = "single", complete = "complete",
# ward = "ward")
# hcs <- pbapply::pblapply(method, function(x) cluster::agnes(dist_mat, method = x))
# acs <- pbapply::pbsapply(hcs, function(x) x$ac)
# hc <- hcs$ward
method <- c(average = "average", single = "single", complete = "complete",
ward = "ward")
hcs <- pbapply::pblapply(method, function(x) cluster::agnes(dist_mat, method = x))
acs <- pbapply::pbsapply(hcs, function(x) x$ac)
# average single complete ward
# 0.9881224 0.9725661 0.9937669 0.9994267
hc <- hcs$ward
hc <- cluster::agnes(dist_mat, method = "ward")
#hc <- cluster::agnes(dist_mat, method = "ward")
k <- 5
@ -59,17 +58,7 @@ plot(coor_2d, col = mycols[cluster])
legend("topleft", paste("Cl", 1:4), col = mycols, pch = 21)
rgl::plot3d(coor_3d, col = mycols[cluster])
table(dattree[cluster == 1, "Pattern"])
table(dattree[cluster == 2, "Pattern"])
table(dattree[cluster == 3, "Pattern"])
table(dattree[cluster == 4, "Pattern"])
table(dattree[cluster == 5, "Pattern"])
table(dattree[cluster == 1, "InfocardOnly"])
table(dattree[cluster == 2, "InfocardOnly"])
table(dattree[cluster == 3, "InfocardOnly"])
table(dattree[cluster == 4, "InfocardOnly"])
table(dattree[cluster == 5, "InfocardOnly"])
ftable(xtabs( ~ InfocardOnly + Pattern + cluster, dattree))
aggregate(. ~ cluster, df, mean)
@ -78,9 +67,6 @@ aggregate(cbind(duration, distance, scaleSize, rotationDegree, length, nitems,
mean)
### Look at selected cases ###########################################
load("")
tmp <- dat
tmp$start <- tmp$date.start
tmp$complete <- tmp$date.stop
@ -133,7 +119,9 @@ c1 <- rpart::rpart(as.factor(cluster) ~ ., data = dattree[, c("PropMoves",
"InfocardOnly")],
method = "class")
pdf("results/figures/tree_items_rpart.pdf", height = 5, width = 15, pointsize = 10)
plot(partykit::as.party(c1))
dev.off()
# with conditional tree
c2 <- partykit::ctree(as.factor(cluster) ~ ., data = dattree[, c("PropMoves",
@ -143,5 +131,8 @@ c2 <- partykit::ctree(as.factor(cluster) ~ ., data = dattree[, c("PropMoves",
"Pattern",
"InfocardOnly")],
alpha = 0.001)
plot(c2)
pdf("results/figures/tree_items_ctree.pdf", height = 7, width = 20, pointsize = 10)
plot(c2)
dev.off()