Added validation script redoing analysis for case clustering for data from 2018
This commit is contained in:
		
							parent
							
								
									88ac019b93
								
							
						
					
					
						commit
						b08955b2c4
					
				@ -3,12 +3,13 @@
 | 
				
			|||||||
# content: (1) Load data
 | 
					# content: (1) Load data
 | 
				
			||||||
#          (2) Clustering
 | 
					#          (2) Clustering
 | 
				
			||||||
#          (3) Fit tree
 | 
					#          (3) Fit tree
 | 
				
			||||||
#          (4) Investigate variants
 | 
					 | 
				
			||||||
#
 | 
					#
 | 
				
			||||||
# input:  results/haum/event_logfiles_2024-02-21_16-07-33.csv
 | 
					# input:  results/haum/dataframes_case_2019.RData
 | 
				
			||||||
# output: results/haum/eventlogs_pre-corona_case-clusters.csv
 | 
					# output: results/haum/eventlogs_2019_case-clusters.csv
 | 
				
			||||||
 | 
					#         results/haum/tmp_user-navigation.RData
 | 
				
			||||||
 | 
					#         ../../thesis/figures/data/clustering_cases.RData
 | 
				
			||||||
#
 | 
					#
 | 
				
			||||||
# last mod: 2024-03-14
 | 
					# last mod: 2024-03-15
 | 
				
			||||||
 | 
					
 | 
				
			||||||
# setwd("C:/Users/nwickelmaier/Nextcloud/Documents/MDS/2023ss/60100_master_thesis/analysis/code")
 | 
					# setwd("C:/Users/nwickelmaier/Nextcloud/Documents/MDS/2023ss/60100_master_thesis/analysis/code")
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@ -126,7 +127,7 @@ write.table(res,
 | 
				
			|||||||
save(res, dist_mat, hcs, acs, coor_2d, coor_3d,
 | 
					save(res, dist_mat, hcs, acs, coor_2d, coor_3d,
 | 
				
			||||||
     file = "results/haum/tmp_user-navigation.RData")
 | 
					     file = "results/haum/tmp_user-navigation.RData")
 | 
				
			||||||
 | 
					
 | 
				
			||||||
save(coor_2d, coor_3d, cluster,
 | 
					save(coor_2d, coor_3d, cluster, dattree,
 | 
				
			||||||
     file = "../../thesis/figures/data/clustering_cases.RData")
 | 
					     file = "../../thesis/figures/data/clustering_cases.RData")
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@ -140,9 +141,7 @@ c1 <- rpart::rpart(as.factor(cluster) ~ ., data = dattree[, c("PropMoves",
 | 
				
			|||||||
                                                              "InfocardOnly")],
 | 
					                                                              "InfocardOnly")],
 | 
				
			||||||
                   method = "class")
 | 
					                   method = "class")
 | 
				
			||||||
 | 
					
 | 
				
			||||||
pdf("results/figures/tree_cases_rpart.pdf", height = 5, width = 15, pointsize = 10)
 | 
					 | 
				
			||||||
plot(partykit::as.party(c1), tp_args = list(fill = mycols, col = mycols))
 | 
					plot(partykit::as.party(c1), tp_args = list(fill = mycols, col = mycols))
 | 
				
			||||||
dev.off()
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
# with conditional tree
 | 
					# with conditional tree
 | 
				
			||||||
c2 <- partykit::ctree(as.factor(cluster) ~ ., data = dattree[, c("PropMoves",
 | 
					c2 <- partykit::ctree(as.factor(cluster) ~ ., data = dattree[, c("PropMoves",
 | 
				
			||||||
@ -153,9 +152,7 @@ c2 <- partykit::ctree(as.factor(cluster) ~ ., data = dattree[, c("PropMoves",
 | 
				
			|||||||
                                                                 "InfocardOnly")],
 | 
					                                                                 "InfocardOnly")],
 | 
				
			||||||
                      alpha = 0.001)
 | 
					                      alpha = 0.001)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
pdf("results/figures/tree_cases_ctree.pdf", height = 7, width = 20, pointsize = 10)
 | 
					 | 
				
			||||||
plot(c2, tp_args = list(fill = mycols, col = mycols))
 | 
					plot(c2, tp_args = list(fill = mycols, col = mycols))
 | 
				
			||||||
dev.off()
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@ -163,7 +160,7 @@ dev.off()
 | 
				
			|||||||
factoextra::fviz_dend(as.hclust(hc), k = k,
 | 
					factoextra::fviz_dend(as.hclust(hc), k = k,
 | 
				
			||||||
                      cex = 0.5,
 | 
					                      cex = 0.5,
 | 
				
			||||||
                      k_colors = mycols,
 | 
					                      k_colors = mycols,
 | 
				
			||||||
                      #type = "phylogenic",
 | 
					                      type = "phylogenic",
 | 
				
			||||||
                      rect = TRUE,
 | 
					                      rect = TRUE,
 | 
				
			||||||
                      main = "",
 | 
					                      main = "",
 | 
				
			||||||
                      ylab = ""
 | 
					                      ylab = ""
 | 
				
			||||||
 | 
				
			|||||||
							
								
								
									
										181
									
								
								code/11_validation.R
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										181
									
								
								code/11_validation.R
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,181 @@
 | 
				
			|||||||
 | 
					# 11_validation.R
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					# content: (1) Load data
 | 
				
			||||||
 | 
					#          (2) Extract characteristics for cases
 | 
				
			||||||
 | 
					#          (3) Select features for navigation behavior
 | 
				
			||||||
 | 
					#          (4) Clustering
 | 
				
			||||||
 | 
					#          (5) Fit tree
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					# input:  results/haum/event_logfiles_2024-02-21_16-07-33.csv
 | 
				
			||||||
 | 
					# output: results/haum/eventlogs_pre-corona_case-clusters.csv
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					# last mod: 2024-03-15
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# setwd("C:/Users/nwickelmaier/Nextcloud/Documents/MDS/2023ss/60100_master_thesis/analysis/code")
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					source("R_helpers.R")
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					#--------------- (1) Read data ---------------
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					load("results/haum/eventlogs_pre-corona_cleaned.RData")
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# Select one year to handle number of cases
 | 
				
			||||||
 | 
					dat <- dat[as.Date(dat$date.start) > "2017-12-31" &
 | 
				
			||||||
 | 
					           as.Date(dat$date.start) < "2019-01-01", ]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					#--------------- (2) Extract characteristics for cases ---------------
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					datcase <- aggregate(cbind(distance, scaleSize, rotationDegree) ~
 | 
				
			||||||
 | 
					                     case, dat, function(x) mean(x, na.rm = TRUE), na.action = NULL)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					datcase$length <- aggregate(item ~ case, dat, length)$item
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					eventtab <- aggregate(event ~ case, dat, table)["case"]
 | 
				
			||||||
 | 
					eventtab$nmove <- aggregate(event ~ case, dat, table)$event[, "move"]
 | 
				
			||||||
 | 
					eventtab$nflipCard <- aggregate(event ~ case, dat, table)$event[, "flipCard"]
 | 
				
			||||||
 | 
					eventtab$nopenTopic <- aggregate(event ~ case, dat, table)$event[, "openTopic"]
 | 
				
			||||||
 | 
					eventtab$nopenPopup <- aggregate(event ~ case, dat, table)$event[, "openPopup"]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					datcase <- datcase |>
 | 
				
			||||||
 | 
					  merge(eventtab, by = "case", all = TRUE)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					rm(eventtab)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					datcase$nitems <- aggregate(item ~ case, dat, function(x)
 | 
				
			||||||
 | 
					                            length(unique(x)), na.action = NULL)$item
 | 
				
			||||||
 | 
					datcase$npaths <- aggregate(path ~ case, dat, function(x)
 | 
				
			||||||
 | 
					                            length(unique(x)), na.action = NULL)$path
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					dat_split <- split(dat, ~ case)
 | 
				
			||||||
 | 
					dat_list <- pbapply::pblapply(dat_split, time_minmax_ms)
 | 
				
			||||||
 | 
					dat_minmax <- dplyr::bind_rows(dat_list)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					datcase$min_time <- aggregate(min_time ~ case, dat_minmax, unique)$min_time
 | 
				
			||||||
 | 
					datcase$max_time <- aggregate(max_time ~ case, dat_minmax, unique)$max_time
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					datcase$duration <- datcase$max_time - datcase$min_time
 | 
				
			||||||
 | 
					datcase$min_time <- NULL
 | 
				
			||||||
 | 
					datcase$max_time <- NULL
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					artworks <- unique(dat$item)[!unique(dat$item) %in% c("501", "502", "503")]
 | 
				
			||||||
 | 
					datcase$infocardOnly <- pbapply::pbsapply(dat_split, check_infocards, artworks = artworks)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# Clean up NAs
 | 
				
			||||||
 | 
					datcase$distance <- ifelse(is.na(datcase$distance), 0, datcase$distance)
 | 
				
			||||||
 | 
					datcase$scaleSize <- ifelse(is.na(datcase$scaleSize), 1, datcase$scaleSize)
 | 
				
			||||||
 | 
					datcase$rotationDegree <- ifelse(is.na(datcase$rotationDegree), 0, datcase$rotationDegree)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					#--------------- (3) Select features for navigation behavior ---------------
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					dattree18 <- data.frame(case = datcase$case,
 | 
				
			||||||
 | 
					                      PropItems = datcase$nitems / length(unique(dat$item)),
 | 
				
			||||||
 | 
					                      SearchInfo = (datcase$nopenTopic +
 | 
				
			||||||
 | 
					                                    datcase$nopenPopup) / datcase$length,
 | 
				
			||||||
 | 
					                      PropMoves = datcase$nmove / datcase$length,
 | 
				
			||||||
 | 
					                      PathLinearity = datcase$nitems / datcase$npaths,
 | 
				
			||||||
 | 
					                      Singularity = datcase$npaths / datcase$length
 | 
				
			||||||
 | 
					)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# centrality <- pbapply::pbsapply(dattree18$case, get_centrality, data = dat)
 | 
				
			||||||
 | 
					# save(centrality, file = "results/haum/tmp_centrality_2018.RData")
 | 
				
			||||||
 | 
					load("results/haum/tmp_centrality_2018.RData")
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					dattree18$BetweenCentrality <- centrality
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# Average duration per item
 | 
				
			||||||
 | 
					dat_split <- split(dat[, c("item", "case", "path", "timeMs.start", "timeMs.stop")], ~ path)
 | 
				
			||||||
 | 
					dat_list <- pbapply::pblapply(dat_split, time_minmax_ms)
 | 
				
			||||||
 | 
					dat_minmax <- dplyr::bind_rows(dat_list)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					tmp <- aggregate(min_time ~ path, dat_minmax, unique)
 | 
				
			||||||
 | 
					tmp$max_time <- aggregate(max_time ~ path, dat_minmax, unique, na.action = NULL)$max_time
 | 
				
			||||||
 | 
					tmp$duration <- tmp$max_time - tmp$min_time
 | 
				
			||||||
 | 
					tmp$case <- aggregate(case ~ path, dat_minmax, unique)$case
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					dattree18$AvDurItem <- aggregate(duration ~ case, tmp, mean)$duration
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					rm(tmp)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# Indicator variable if table was used as info terminal only
 | 
				
			||||||
 | 
					dattree18$InfocardOnly <- factor(datcase$infocardOnly, levels = 0:1,
 | 
				
			||||||
 | 
					                               labels = c("no", "yes"))
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# Add pattern to datcase; loosely based on Bousbia et al. (2009)
 | 
				
			||||||
 | 
					dattree18$Pattern <- "Dispersion"
 | 
				
			||||||
 | 
					dattree18$Pattern <- ifelse(dattree18$PathLinearity > 0.8, "Scholar",
 | 
				
			||||||
 | 
					                          dattree18$Pattern)
 | 
				
			||||||
 | 
					dattree18$Pattern <- ifelse(dattree18$PathLinearity <= 0.8 &
 | 
				
			||||||
 | 
					                          dattree18$BetweenCentrality >= 0.5, "Star",
 | 
				
			||||||
 | 
					                          dattree18$Pattern)
 | 
				
			||||||
 | 
					dattree18$Pattern <- factor(dattree18$Pattern)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					dattree18$AvDurItemNorm <- normalize(dattree18$AvDurItem)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					#--------------- (4) Clustering ---------------
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					df <- dattree18[, c("PropItems", "SearchInfo", "PropMoves", "AvDurItemNorm",
 | 
				
			||||||
 | 
					                  "Pattern", "InfocardOnly")]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					dist_mat18 <- cluster::daisy(df, metric = "gower")
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					coor_3d <- smacof::mds(dist_mat, ndim = 3, type = "ordinal")$conf
 | 
				
			||||||
 | 
					coor_2d <- coor_3d[, 1:2]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					plot(coor_2d)
 | 
				
			||||||
 | 
					rgl::plot3d(coor_3d)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					hc18 <- cluster::agnes(dist_mat, method = "ward")
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					k <- 5
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					mycols <- c("#91C86E", "#FF6900", "#3CB4DC", "#78004B", "#434F4F")
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					cluster18 <- cutree(as.hclust(hc18), k = k)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					table(cluster18)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					plot(coor_2d, col = mycols[cluster18], pch = 16)
 | 
				
			||||||
 | 
					legend("topleft", c("Searching", "Exploring", "Scanning", "Flitting", "Info"),
 | 
				
			||||||
 | 
					       col = mycols, bty = "n", pch = 16)
 | 
				
			||||||
 | 
					rgl::plot3d(coor_3d, col = mycols[cluster18])
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					print(ftable(xtabs( ~ InfocardOnly + Pattern + cluster18, dattree18)), zero = "-")
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					aggregate(. ~ cluster18, df, mean)
 | 
				
			||||||
 | 
					aggregate(. ~ cluster18, dattree18[, -1], mean)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					save(coor_2d, coor_3d, cluster18, dattree18, dist_mat18, hc18,
 | 
				
			||||||
 | 
					     file = "../../thesis/figures/data/clustering_cases_2018.RData")
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					#--------------- (5) Fit tree ---------------
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					c1 <- rpart::rpart(as.factor(cluster18) ~ ., data = dattree18[, c("PropMoves",
 | 
				
			||||||
 | 
					                                                              "PropItems",
 | 
				
			||||||
 | 
					                                                              "SearchInfo",
 | 
				
			||||||
 | 
					                                                              "AvDurItem",
 | 
				
			||||||
 | 
					                                                              "Pattern",
 | 
				
			||||||
 | 
					                                                              "InfocardOnly")],
 | 
				
			||||||
 | 
					                   method = "class")
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					plot(partykit::as.party(c1), tp_args = list(fill = mycols, col = mycols))
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					## Load data
 | 
				
			||||||
 | 
					load("../../thesis/figures/data/clustering_cases.RData")
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					c19 <- rpart::rpart(as.factor(cluster) ~ ., data = dattree[, c("PropMoves",
 | 
				
			||||||
 | 
					                                                              "PropItems",
 | 
				
			||||||
 | 
					                                                              "SearchInfo",
 | 
				
			||||||
 | 
					                                                              "AvDurItem",
 | 
				
			||||||
 | 
					                                                              "Pattern",
 | 
				
			||||||
 | 
					                                                              "InfocardOnly")],
 | 
				
			||||||
 | 
					                   method = "class")
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					cl18 <- rpart:::predict.rpart(c1, type = "class", newdata = dattree18)
 | 
				
			||||||
 | 
					cl18 <- factor(cl18, labels = c("Searching", "Exploring", "Scanning", "Flitting", "Info"))
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					cl19 <- rpart:::predict.rpart(c19, type = "class", newdata = dattree18)
 | 
				
			||||||
 | 
					cl19 <- factor(cl19, labels = c("Scanning", "Exploring", "Flitting", "Searching", "Info"))
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					xtabs( ~ cl18 + cl19)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@ -48,13 +48,23 @@ vioplot::vioplot(tr$absolute_frequency)
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
# Power law for frequencies of traces
 | 
					# Power law for frequencies of traces
 | 
				
			||||||
tab <- table(tr$absolute_frequency)
 | 
					tab <- table(tr$absolute_frequency)
 | 
				
			||||||
x <- as.numeric(tab)
 | 
					x <- as.numeric(names(tab))
 | 
				
			||||||
y <- as.numeric(names(tab))
 | 
					y <- as.numeric(tab)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
plot(x, y, log = "xy")
 | 
					 | 
				
			||||||
p1 <- lm(log(y) ~ log(x))
 | 
					p1 <- lm(log(y) ~ log(x))
 | 
				
			||||||
pre <- exp(coef(p1)[1]) * x^coef(p1)[2]
 | 
					pre <- exp(coef(p1)[1]) * x^coef(p1)[2]
 | 
				
			||||||
lines(x, pre)
 | 
					
 | 
				
			||||||
 | 
					pdf("results/figures/freq-traces_powerlaw.pdf", height = 3.375,
 | 
				
			||||||
 | 
					    width = 3.375, pointsize = 10)
 | 
				
			||||||
 | 
					par(mai = c(.6,.6,.1,.1), mgp = c(2.4, 1, 0))
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					plot(x, y, log = "xy", xlab = "Absolute Frequency of Traces",
 | 
				
			||||||
 | 
					     ylab = "Frequency", pch = 16, col = rgb(0.262, 0.309, 0.309, 0.5))
 | 
				
			||||||
 | 
					lines(x, pre, col = "#434F4F")
 | 
				
			||||||
 | 
					legend("topright", paste0("Proportion of traces only occurring once: ",
 | 
				
			||||||
 | 
					                          round(tab[1] / nrow(tr), 2)), cex = .7, bty = "n")
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					dev.off()
 | 
				
			||||||
 | 
					
 | 
				
			||||||
# Look at individual traces as examples
 | 
					# Look at individual traces as examples
 | 
				
			||||||
tr[trace_varied == 5 & trace_length > 50, ]
 | 
					tr[trace_varied == 5 & trace_length > 50, ]
 | 
				
			||||||
		Loading…
	
	
			
			x
			
			
		
	
		Reference in New Issue
	
	Block a user