Script cleaning; data are now exported better

This commit is contained in:
Nora Wickelmaier 2024-03-06 17:59:22 +01:00
parent f8c1767074
commit 6cfc19a874
7 changed files with 161 additions and 102 deletions

View File

@ -11,7 +11,7 @@
# output: raw_logfiles_<timestamp>.csv # output: raw_logfiles_<timestamp>.csv
# event_logfiles_<timestamp>.csv # event_logfiles_<timestamp>.csv
# #
# last mod: 2024-01-18, NW # last mod: 2024-02-23, NW
# setwd("C:/Users/nwickelmaier/Nextcloud/Documents/MDS/2023ss/60100_master_thesis/analysis/code") # setwd("C:/Users/nwickelmaier/Nextcloud/Documents/MDS/2023ss/60100_master_thesis/analysis/code")

View File

@ -1,7 +1,25 @@
# 03_create-petrinet.py
#
# content: (1) Create places and transitions
# (2) Sequential net
# (3) Concurrent net
#
# input: --
# output: results/haum/conformative_petrinet_con.pnml
# results/processmaps/conformative_petrinet_con.png
# results/processmaps/conformative_bpmn_con.png
# results/haum/conformative_petrinet_seq.pnml
# results/processmaps/conformative_petrinet_seq.png
# results/processmaps/conformative_bpmn_seq.png
#
# last mod: 2024-03-06
import pm4py import pm4py
from pm4py.objects.petri_net.obj import PetriNet, Marking from pm4py.objects.petri_net.obj import PetriNet, Marking
from pm4py.objects.petri_net.utils import petri_utils from pm4py.objects.petri_net.utils import petri_utils
#--------------- (1) Create places and transitions ---------------
# Create places # Create places
source = PetriNet.Place("source") source = PetriNet.Place("source")
sink = PetriNet.Place("sink") sink = PetriNet.Place("sink")
@ -44,7 +62,8 @@ t_16 = PetriNet.Transition("t_16")
t_17 = PetriNet.Transition("t_17") t_17 = PetriNet.Transition("t_17")
t_18 = PetriNet.Transition("t_18") t_18 = PetriNet.Transition("t_18")
## Sequential net #--------------- (2) Sequential net ---------------
net_seq = PetriNet("new_petri_net") net_seq = PetriNet("new_petri_net")
# Add places # Add places
@ -149,7 +168,8 @@ pm4py.view_bpmn(bpmn)
pm4py.vis.save_vis_bpmn(bpmn, "results/processmaps/conformative_bpmn_seq.png") pm4py.vis.save_vis_bpmn(bpmn, "results/processmaps/conformative_bpmn_seq.png")
## Concurrent net #--------------- (3) Concurrent net ---------------
net_con = PetriNet("new_petri_net") net_con = PetriNet("new_petri_net")
# Add places # Add places

View File

@ -1,9 +1,33 @@
# 04_conformance-checking.py
#
# content: (1) Load data and create event log
# (2) Infos for items
#
# input: results/haum/event_logfiles_2024-02-21_16-07-33.csv
# results/haum/conformative_petrinet_con.pnml
# output: results/processmaps/dfg_complete_python.png
# results/eval_all-miners_complete.csv
# results/eval_all-miners_clean.csv
# results/processmaps/petrinet_conformative.png
# results/processmaps/petrinet_heuristics_clean.png
# results/processmaps/petrinet_alpha_clean.png
# results/processmaps/petrinet_inductive_clean.png
# results/processmaps/petrinet_ilp_clean.png
# results/processmaps/bpmn_conformative.png
# results/processmaps/bpmn_inductive_clean.png
# results/processmaps/bpmn_ilp_clean.png
# results/processmaps/bpmn_alpha_clean.png
# results/processmaps/bpmn_heuristics_clean.png
#
# last mod: 2024-03-06
import pm4py import pm4py
import pandas as pd import pandas as pd
import numpy as np import numpy as np
from python_helpers import eval_pm, pn_infos_miner from python_helpers import eval_pm, pn_infos_miner
###### Load data and create event logs ###### #--------------- (1) Load data and create event logs ---------------
dat = pd.read_csv("results/haum/event_logfiles_2024-02-21_16-07-33.csv", sep = ";") dat = pd.read_csv("results/haum/event_logfiles_2024-02-21_16-07-33.csv", sep = ";")
@ -129,3 +153,4 @@ a_bpmn = pm4py.convert.convert_to_bpmn(a_net, a_im, a_fm)
pm4py.vis.save_vis_bpmn(a_bpmn, "results/processmaps/bpmn_alpha_clean.png") pm4py.vis.save_vis_bpmn(a_bpmn, "results/processmaps/bpmn_alpha_clean.png")
h_bpmn = pm4py.convert.convert_to_bpmn(h_net, h_im, h_fm) h_bpmn = pm4py.convert.convert_to_bpmn(h_net, h_im, h_fm)
pm4py.vis.save_vis_bpmn(h_bpmn, "results/processmaps/bpmn_heuristics_clean.png") pm4py.vis.save_vis_bpmn(h_bpmn, "results/processmaps/bpmn_heuristics_clean.png")

View File

@ -1,3 +1,16 @@
# 05_check-traces.R
#
# content: (1) Look at broken trace
# (2) Function to find broken traces
# (3) Export data frame for analyses
#
# input: results/haum/event_logfiles_2024-02-21_16-07-33.csv
# results/haum/raw_logfiles_2024-02-21_16-07-33.csv
# output: results/haum/eventlogs_pre-corona_cleaned.RData
# results/haum/eventlogs_pre-corona_cleaned.csv
#
# last mod: 2024-03-06
# setwd("C:/Users/nwickelmaier/Nextcloud/Documents/MDS/2023ss/60100_master_thesis/analysis/code") # setwd("C:/Users/nwickelmaier/Nextcloud/Documents/MDS/2023ss/60100_master_thesis/analysis/code")
#--------------- (1) Look at broken trace --------------- #--------------- (1) Look at broken trace ---------------
@ -49,3 +62,31 @@ check <- check_traces(tmp)
check[check$check, ] check[check$check, ]
#--------------- (3) Export data frame for analyses ---------------
datlogs$event <- factor(datlogs$event, levels = c("move", "flipCard",
"openTopic",
"openPopup"))
datlogs$topic <- factor(datlogs$topic)
datlogs$weekdays <- factor(weekdays(datlogs$date.start),
levels = c("Montag", "Dienstag", "Mittwoch",
"Donnerstag", "Freitag", "Samstag",
"Sonntag"),
labels = c("Monday", "Tuesday", "Wednesday",
"Thursday", "Friday", "Saturday",
"Sunday"))
# Select data pre Corona
dat <- datlogs[as.Date(datlogs$date.start) < "2020-03-13", ]
# Remove corrupt trace
dat <- dat[dat$path != 106098, ]
save(dat, file = "results/haum/eventlogs_pre-corona_cleaned.RData")
write.table(dat,
file = "results/haum/eventlogs_pre-corona_cleaned.csv",
sep = ";",
quote = FALSE,
row.names = FALSE)

View File

@ -1,28 +1,37 @@
# 06_infos-items.py
#
# content: (1) Load data and create event log
# (2) Infos for items
#
# input: results/haum/eventlogs_pre-corona_cleaned.csv
# output: results/haum/pn_infos_items.csv
#
# last mod: 2024-03-06
import pm4py import pm4py
import pandas as pd import pandas as pd
import numpy as np import numpy as np
from python_helpers import eval_pm, pn_infos from python_helpers import eval_pm, pn_infos
###### Load data and create event logs ###### #--------------- (1) Load data and create event logs ---------------
dat = pd.read_csv("results/haum/event_logfiles_2024-02-21_16-07-33.csv", sep = ";") dat = pd.read_csv("results/haum/eventlogs_pre-corona_cleaned", sep = ";")
dat = dat[dat["date.start"] < "2020-03-13"]
# --> only pre corona (before artworks were updated)
dat = dat[dat["path"] != 106098]
# exclude broken trace
log_path = pm4py.format_dataframe(dat, case_id = "path", activity_key = "event", log_path = pm4py.format_dataframe(dat, case_id = "path", activity_key = "event",
timestamp_key = "date.start") timestamp_key = "date.start")
###### Infos for items ###### #--------------- (2) Infos for items ---------------
eval = pd.DataFrame(columns = ["fitness", "precision", "generalizability", eval = pd.DataFrame(columns = ["fitness", "precision", "generalizability",
"simplicity", "sound", "narcs", "ntrans", "simplicity", "sound", "narcs", "ntrans",
"nplaces", "nvariants", "mostfreq"]) "nplaces", "nvariants", "mostfreq"])
for item in log_path.item.unique().tolist(): for item in log_path.item.unique().tolist():
eval = pd.concat([eval, pn_infos(log_path, "item", item)]) eval = pd.concat([eval, pn_infos(log_path, "item", item)])
eval = eval.sort_index() eval = eval.sort_index()
# Export # Export
eval.to_csv("results/haum/pn_infos_items.csv", sep = ";") eval.to_csv("results/haum/pn_infos_items.csv", sep = ";")

View File

@ -7,12 +7,11 @@
# (2) Clustering # (2) Clustering
# (3) Visualization with pictures # (3) Visualization with pictures
# #
# input: results/haum/event_logfiles_2024-02-21_16-07-33.csv # input: results/haum/eventlogs_pre-corona_cleaned.RData
# results/haum/pn_infos_items.csv # results/haum/pn_infos_items.csv
# output: results/haum/event_logfiles_pre-corona_with-clusters.csv # output: results/haum/eventlogs_pre-corona_item-clusters.csv
# #
# last mod: 2024-02-23 # last mod: 2024-03-06
# setwd("C:/Users/nwickelmaier/Nextcloud/Documents/MDS/2023ss/60100_master_thesis/analysis/code") # setwd("C:/Users/nwickelmaier/Nextcloud/Documents/MDS/2023ss/60100_master_thesis/analysis/code")
@ -23,34 +22,16 @@ library(factoextra)
#--------------- (1.1) Read log event data --------------- #--------------- (1.1) Read log event data ---------------
dat0 <- read.table("results/haum/event_logfiles_2024-02-21_16-07-33.csv", load("results/haum/eventlogs_pre-corona_cleaned.RData")
colClasses = c("character", "character", "POSIXct",
"POSIXct", "character", "integer",
"numeric", "character", "character",
rep("numeric", 3), "character",
"character", rep("numeric", 11),
"character", "character"),
sep = ";", header = TRUE)
dat0$event <- factor(dat0$event, levels = c("move", "flipCard", "openTopic",
"openPopup"))
# TODO: Maybe look at this with complete data?
# Select data pre Corona
dat <- dat0[as.Date(dat0$date.start) < "2020-03-13", ]
dat <- dat[dat$path != 106098, ]
#--------------- (1.2) Read infos for PM for items --------------- #--------------- (1.2) Read infos for PM for items ---------------
datitem <- read.table("results/haum/pn_infos_items.csv", header = TRUE, datitem <- read.table("results/haum/pn_infos_items.csv", header = TRUE,
sep = ";", row.names = 1) sep = ";", row.names = 1)
#--------------- (1.3) Extract additional infos for clustering --------------- #--------------- (1.3) Extract additional infos for clustering ---------------
dat_split <- split(dat, ~ path) time_minmax_ms <- function(subdata) {
time_minmax <- function(subdata) {
subdata$min_time <- min(subdata$timeMs.start) subdata$min_time <- min(subdata$timeMs.start)
if (all(is.na(subdata$timeMs.stop))) { if (all(is.na(subdata$timeMs.stop))) {
subdata$max_time <- NA subdata$max_time <- NA
@ -59,18 +40,18 @@ time_minmax <- function(subdata) {
} }
subdata subdata
} }
# TODO: Move to helper file
dat_list <- pbapply::pblapply(dat_split, time_minmax) # Get average duration per path
dat_split <- split(dat, ~ path)
dat_list <- pbapply::pblapply(dat_split, time_minmax_ms)
dat_minmax <- dplyr::bind_rows(dat_list) dat_minmax <- dplyr::bind_rows(dat_list)
datpath <- aggregate(duration ~ item + path, dat, mean, na.action = NULL) datpath <- aggregate(duration ~ item + path, dat, mean, na.action = NULL)
datpath$min_time <- aggregate(min_time ~ path, dat_minmax, unique, na.action = NULL)$min_time datpath$min_time <- aggregate(min_time ~ path, dat_minmax, unique, na.action = NULL)$min_time
datpath$max_time <- aggregate(max_time ~ path, dat_minmax, unique, na.action = NULL)$max_time datpath$max_time <- aggregate(max_time ~ path, dat_minmax, unique, na.action = NULL)$max_time
datpath$duration <- datpath$max_time - datpath$min_time
datpath$duration_path <- datpath$max_time - datpath$min_time
# average duration per path
datitem$duration <- aggregate(duration ~ item, datpath, mean)$duration datitem$duration <- aggregate(duration ~ item, datpath, mean)$duration
datitem$distance <- aggregate(distance ~ item, dat, mean)$distance datitem$distance <- aggregate(distance ~ item, dat, mean)$distance
datitem$scaleSize <- aggregate(scaleSize ~ item, dat, mean)$scaleSize datitem$scaleSize <- aggregate(scaleSize ~ item, dat, mean)$scaleSize
@ -89,66 +70,39 @@ df <- datitem[, c("precision", "generalizability", "nvariants", "duration",
"ncases", "nmoves", "nopenTopic", "nopenPopup")] |> "ncases", "nmoves", "nopenTopic", "nopenPopup")] |>
scale() scale()
mat <- dist(df) dist_mat <- dist(df)
heatmap(as.matrix(mat)) heatmap(as.matrix(dist_mat))
# Choosing best linkage method # Choosing best linkage method
h1 <- hclust(mat, method = "average") method <- c(average = "average", single = "single", complete = "complete",
h2 <- hclust(mat, method = "complete") ward = "ward")
h3 <- hclust(mat, method = "ward.D")
h4 <- hclust(mat, method = "ward.D2")
h5 <- hclust(mat, method = "single")
# Cophenetic Distances, for each linkage hcs <- lapply(method, function(x) cluster::agnes(dist_mat, method = x))
c1 <- cophenetic(h1) acs <- sapply(hcs, function(x) x$ac)
c2 <- cophenetic(h2)
c3 <- cophenetic(h3)
c4 <- cophenetic(h4)
c5 <- cophenetic(h5)
# Correlations
cor(mat, c1)
cor(mat, c2)
cor(mat, c3)
cor(mat, c4)
cor(mat, c5)
# https://en.wikipedia.org/wiki/Cophenetic_correlation
# https://stats.stackexchange.com/questions/195446/choosing-the-right-linkage-method-for-hierarchical-clustering
# Dendograms # Dendograms
par(mfrow=c(3,2)) par(mfrow=c(4,2))
plot(h1, main = "Average Linkage") for (hc in hcs) plot(hc, main = "")
plot(h2, main = "Complete Linkage")
plot(h3, main = "Ward Linkage")
plot(h4, main = "Ward 2 Linkage")
plot(h5, main = "Single Linkage")
hc <- hcs$ward
hc <- h1
# Note that agnes(*, method="ward") corresponds to hclust(*, "ward.D2")
k <- 4 # number of clusters k <- 4 # number of clusters
mycols <- c("#78004B", "#FF6900", "#3CB4DC", "#91C86E")
grp <- cutree(hc, k = k) grp <- cutree(hc, k = k)
datitem$grp <- grp datitem$grp <- grp
fviz_dend(hc, k = k, fviz_dend(hc, k = k,
cex = 0.5, cex = 0.5,
k_colors = c("#78004B", "#FF6900", "#3CB4DC", "#91C86E", k_colors = mycols,
"#000000", "gold", "#434F4F"),
#type = "phylogenic", #type = "phylogenic",
rect = TRUE rect = TRUE
) )
plot(hc)
rect.hclust(hc, k=8, border="red")
rect.hclust(hc, k=7, border="blue")
rect.hclust(hc, k=6, border="green")
p <- fviz_cluster(list(data = df, cluster = grp), p <- fviz_cluster(list(data = df, cluster = grp),
palette = c("#78004B", "#FF6900", "#3CB4DC", "#91C86E", palette = mycols,
"#000000", "#434F4F", "gold"),
ellipse.type = "convex", ellipse.type = "convex",
repel = TRUE, repel = TRUE,
show.clust.cent = FALSE, ggtheme = theme_bw()) show.clust.cent = FALSE, ggtheme = theme_bw())
@ -156,14 +110,16 @@ p
aggregate(cbind(duration, distance, scaleSize , rotationDegree, npaths, aggregate(cbind(duration, distance, scaleSize , rotationDegree, npaths,
ncases, nmoves, nflipCard, nopenTopic, nopenPopup) ~ grp, ncases, nmoves, nflipCard, nopenTopic, nopenPopup) ~ grp,
datitem, median) datitem, mean)
aggregate(cbind(duration, distance, scaleSize , rotationDegree, npaths,
ncases, nmoves, nflipCard, nopenTopic, nopenPopup) ~ grp,
datitem, max)
# Something like a scree plot (??) # Something like a scree plot (??)
plot(rev(seq_along(hc$height)), hc$height, type = "l") plot(rev(hc$height), type = "b", pch = 16, cex = .5)
points(rev(seq_along(hc$height)), hc$height, pch = 16, cex = .5)
datitem$item <- sprintf("%03d", datitem$item <- sprintf("%03d",
as.numeric(gsub("item_([0-9]{3})", "\\1", row.names(datitem)))) as.numeric(gsub("item_([0-9]{3})", "\\1", row.names(datitem))))
@ -179,7 +135,7 @@ vioplot::vioplot(scaleSize ~ grp, res)
vioplot::vioplot(rotationDegree ~ grp, res) vioplot::vioplot(rotationDegree ~ grp, res)
write.table(res, write.table(res,
file = "results/haum/event_logfiles_pre-corona_with-clusters.csv", file = "results/haum/eventlogs_pre-corona_item-clusters.csv",
sep = ";", sep = ";",
quote = FALSE, quote = FALSE,
row.names = FALSE) row.names = FALSE)
@ -207,8 +163,6 @@ for (cluster in sort(unique(res$grp))) {
file_name = paste0("results/processmaps/dfg_cluster", cluster, "_R.pdf"), file_name = paste0("results/processmaps/dfg_cluster", cluster, "_R.pdf"),
file_type = "pdf", file_type = "pdf",
title = paste("DFG Cluster", cluster)) title = paste("DFG Cluster", cluster))
} }
#--------------- (3) Visualization with pictures --------------- #--------------- (3) Visualization with pictures ---------------
@ -217,8 +171,6 @@ library(png)
library(jpeg) library(jpeg)
library(grid) library(grid)
colors <- c("#78004B", "#FF6900", "#3CB4DC", "#91C86E")
pdf("results/figures/clustering_artworks.pdf", height = 8, width = 8, pointsize = 10) pdf("results/figures/clustering_artworks.pdf", height = 8, width = 8, pointsize = 10)
#png("results/figures/clustering_artworks.png", units = "in", height = 8, width = 8, pointsize = 10, res = 300) #png("results/figures/clustering_artworks.png", units = "in", height = 8, width = 8, pointsize = 10, res = 300)
@ -244,7 +196,7 @@ for (item in sprintf("%03d", as.numeric(rownames(p$data)))) {
y <- p$data$y[sprintf("%03d", as.numeric(rownames(p$data))) == item] y <- p$data$y[sprintf("%03d", as.numeric(rownames(p$data))) == item]
points(x, y, points(x, y,
col = colors[p$data$cluster[sprintf("%03d", as.numeric(rownames(p$data))) == item]], col = mycols[p$data$cluster[sprintf("%03d", as.numeric(rownames(p$data))) == item]],
cex = 9, cex = 9,
pch = 15) pch = 15)
@ -255,7 +207,7 @@ for (item in sprintf("%03d", as.numeric(rownames(p$data)))) {
ytop = y + .2) ytop = y + .2)
} }
legend("topright", paste("Cluster", 1:k), col = colors, pch = 15, bty = "n") legend("topright", paste("Cluster", 1:k), col = mycols, pch = 15, bty = "n")
dev.off() dev.off()

View File

@ -1,16 +1,27 @@
# 08_infos-clusters.py
#
# content: (1) Load data and create event log
# (2) Infos for clusters
# (3) Process maps for clusters
#
# input: results/haum/eventlogs_pre-corona_item-clusters.csv
# output: results/haum/pn_infos_clusters.csv
#
# last mod: 2024-03-06
import pm4py import pm4py
import pandas as pd import pandas as pd
from python_helpers import eval_pm, pn_infos from python_helpers import eval_pm, pn_infos
###### Load data and create event logs ###### #--------------- (1) Load data and create event logs ---------------
dat = pd.read_csv("results/haum/event_logfiles_pre-corona_with-clusters.csv", sep = ";") dat = pd.read_csv("results/haum/eventlogs_pre-corona_item-clusters.csv", sep = ";")
log_path = pm4py.format_dataframe(dat, case_id = "path", activity_key = "event", log_path = pm4py.format_dataframe(dat, case_id = "path", activity_key = "event",
timestamp_key = "date.start") timestamp_key = "date.start")
###### Infos for clusters ###### #--------------- (2) Infos for clusters ---------------
# Merge clusters into data frame # Merge clusters into data frame
eval = pd.DataFrame(columns = ["fitness", "precision", "generalizability", eval = pd.DataFrame(columns = ["fitness", "precision", "generalizability",
@ -22,12 +33,13 @@ eval = eval.sort_index()
eval.to_csv("results/haum/pn_infos_clusters.csv", sep = ";") eval.to_csv("results/haum/pn_infos_clusters.csv", sep = ";")
###### Process maps for clusters ###### #--------------- (3) Process maps for clusters ---------------
for cluster in log_path.grp.unique().tolist(): for cluster in log_path.grp.unique().tolist():
subdata = log_path[log_path.grp == cluster] subdata = log_path[log_path.grp == cluster]
subnet, subim, subfm = pm4py.discover_petri_net_inductive(subdata) subnet, subim, subfm = pm4py.discover_petri_net_inductive(subdata, noise_threshold=0.5)
pm4py.save_vis_petri_net(subnet, subim, subfm, pm4py.save_vis_petri_net(subnet, subim, subfm,
"results/processmaps/petrinet_cluster" + str(cluster).zfill(3) + ".png") "results/processmaps/petrinet_cluster" + str(cluster).zfill(3) + ".png")
bpmn = pm4py.convert.convert_to_bpmn(subnet, subim, subfm) bpmn = pm4py.convert.convert_to_bpmn(subnet, subim, subfm)
pm4py.vis.save_vis_bpmn(bpmn, "results/processmaps/bpmn_cluster_" + str(cluster).zfill(3) + ".png") pm4py.vis.save_vis_bpmn(bpmn, "results/processmaps/bpmn_cluster_" +
str(cluster).zfill(3) + ".png")