Worked some more on clustering of cases; removed DBSCAN and only selects cases from 2019 now
This commit is contained in:
parent
6cfc19a874
commit
4eca6c81d6
@ -1,17 +1,16 @@
|
||||
# 09_user_navigation.R
|
||||
# 09_user-navigation.R
|
||||
#
|
||||
# content: (1) Read data
|
||||
# (1.1) Read log event data
|
||||
# (1.2) Extract additional infos for clustering
|
||||
# (2) Clustering
|
||||
# (3) Fit tree
|
||||
# (3) Investigate variants
|
||||
# (4) Investigate variants
|
||||
#
|
||||
# input: results/haum/event_logfiles_2024-02-21_16-07-33.csv
|
||||
# output: results/haum/event_logfiles_pre-corona_with-clusters_cases.csv
|
||||
# results/haum/dattree.csv
|
||||
# output: results/haum/eventlogs_pre-corona_case-clusters.csv
|
||||
#
|
||||
# last mod: 2024-02-27
|
||||
# last mod: 2024-03-06
|
||||
|
||||
|
||||
# setwd("C:/Users/nwickelmaier/Nextcloud/Documents/MDS/2023ss/60100_master_thesis/analysis/code")
|
||||
@ -23,33 +22,11 @@ library(factoextra)
|
||||
|
||||
#--------------- (1.1) Read log event data ---------------
|
||||
|
||||
dat0 <- read.table("results/haum/event_logfiles_2024-02-21_16-07-33.csv",
|
||||
colClasses = c("character", "character", "POSIXct",
|
||||
"POSIXct", "character", "integer",
|
||||
"numeric", "character", "character",
|
||||
rep("numeric", 3), "character",
|
||||
"character", rep("numeric", 11),
|
||||
"character", "character"),
|
||||
sep = ";", header = TRUE)
|
||||
load("results/haum/eventlogs_pre-corona_cleaned.RData")
|
||||
|
||||
dat0$event <- factor(dat0$event, levels = c("move", "flipCard", "openTopic",
|
||||
"openPopup"))
|
||||
dat0$topic <- factor(dat0$topic)
|
||||
|
||||
dat0$weekdays <- factor(weekdays(dat0$date.start),
|
||||
levels = c("Montag", "Dienstag", "Mittwoch",
|
||||
"Donnerstag", "Freitag", "Samstag",
|
||||
"Sonntag"),
|
||||
labels = c("Monday", "Tuesday", "Wednesday",
|
||||
"Thursday", "Friday", "Saturday",
|
||||
"Sunday"))
|
||||
|
||||
|
||||
# Select data pre Corona
|
||||
dat <- dat0[as.Date(dat0$date.start) < "2020-03-13", ]
|
||||
dat <- dat[dat$path != 106098, ]
|
||||
|
||||
rm(dat0)
|
||||
# Select one year to handle number of cases
|
||||
dat <- dat[as.Date(dat$date.start) > "2018-12-31" &
|
||||
as.Date(dat$date.start) < "2020-01-01", ]
|
||||
|
||||
#--------------- (1.2) Extract additional infos for clustering ---------------
|
||||
|
||||
@ -107,7 +84,7 @@ datcase$morning <- aggregate(date.start ~ case, dat,
|
||||
|
||||
dat_split <- split(dat, ~ case)
|
||||
|
||||
time_minmax <- function(subdata) {
|
||||
time_minmax_ms <- function(subdata) {
|
||||
subdata$min_time <- min(subdata$timeMs.start)
|
||||
if (all(is.na(subdata$timeMs.stop))) {
|
||||
subdata$max_time <- NA
|
||||
@ -116,9 +93,9 @@ time_minmax <- function(subdata) {
|
||||
}
|
||||
subdata
|
||||
}
|
||||
# TODO: Export from package mtt
|
||||
# TODO: Move to helper file
|
||||
|
||||
dat_list <- pbapply::pblapply(dat_split, time_minmax)
|
||||
dat_list <- pbapply::pblapply(dat_split, time_minmax_ms)
|
||||
dat_minmax <- dplyr::bind_rows(dat_list)
|
||||
|
||||
datcase$min_time <- aggregate(min_time ~ case, dat_minmax, unique)$min_time
|
||||
@ -160,8 +137,6 @@ datcase$thema <- ifelse(is.na(datcase$thema), 0, datcase$thema)
|
||||
datcase$ntopics <- ifelse(is.na(datcase$ntopics), 0, datcase$ntopics)
|
||||
datcase$ntopiccards <- ifelse(is.na(datcase$ntopiccards), 0, datcase$ntopiccards)
|
||||
|
||||
|
||||
|
||||
cor_mat <- cor(datcase[, -1], use = "pairwise")
|
||||
diag(cor_mat) <- NA
|
||||
heatmap(cor_mat)
|
||||
@ -216,26 +191,24 @@ get_centrality <- function(case, data) {
|
||||
net <- process_map(alog, render = FALSE)
|
||||
inet <- DiagrammeR::to_igraph(net)
|
||||
|
||||
c(igraph::centr_degree(inet, loops = FALSE)$centralization,
|
||||
igraph::centr_degree(inet, loops = TRUE)$centralization,
|
||||
igraph::centr_betw(inet)$centralization)
|
||||
#c(igraph::centr_degree(inet, loops = FALSE)$centralization,
|
||||
# igraph::centr_degree(inet, loops = TRUE)$centralization,
|
||||
# igraph::centr_betw(inet)$centralization)
|
||||
igraph::centr_betw(inet)$centralization
|
||||
}
|
||||
# TODO: Move to helper file
|
||||
|
||||
# centrality <- lapply(dattree$case, get_centrality, data = dat)
|
||||
# centrality <- do.call(rbind, centrality)
|
||||
#
|
||||
centrality <- pbapply::pblapply(dattree$case, get_centrality, data = dat)
|
||||
centrality <- do.call(rbind, centrality)
|
||||
|
||||
# save(centrality, file = "results/haum/tmp_centrality.RData")
|
||||
load("results/haum/tmp_centrality.RData")
|
||||
#load("results/haum/tmp_centrality.RData")
|
||||
|
||||
#dattree$DegreeCentrality <- centrality[, 2]
|
||||
dattree$BetweenCentrality <- centrality[, 3]
|
||||
|
||||
## Add average duration per item
|
||||
dattree$BetweenCentrality <- unlist(centrality)
|
||||
|
||||
# Average duration per item
|
||||
dat_split <- split(dat[, c("item", "case", "path", "timeMs.start", "timeMs.stop")], ~ path)
|
||||
|
||||
dat_list <- pbapply::pblapply(dat_split, time_minmax)
|
||||
dat_list <- pbapply::pblapply(dat_split, time_minmax_ms)
|
||||
dat_minmax <- dplyr::bind_rows(dat_list)
|
||||
|
||||
tmp <- aggregate(min_time ~ path, dat_minmax, unique)
|
||||
@ -244,10 +217,23 @@ tmp$duration <- tmp$max_time - tmp$min_time
|
||||
tmp$case <- aggregate(case ~ path, dat_minmax, unique)$case
|
||||
|
||||
dattree$AvDurItem <- aggregate(duration ~ case, tmp, mean)$duration
|
||||
#dattree$AvDurItem <- dattree$AvDurItem / datcase$duration
|
||||
|
||||
rm(tmp)
|
||||
|
||||
# Indicator variable if table was used as info terminal only
|
||||
dattree$InfocardOnly <- factor(datcase$infocardOnly, levels = 0:1,
|
||||
labels = c("no", "yes"))
|
||||
|
||||
# Add pattern to datcase; loosely based on Bousbia et al. (2009)
|
||||
dattree$Pattern <- "Dispersion"
|
||||
dattree$Pattern <- ifelse(dattree$PathLinearity > 0.8 & dattree$Singularity > 0.8, "Scholar",
|
||||
dattree$Pattern)
|
||||
dattree$Pattern <- ifelse(dattree$PathLinearity <= 0.8 &
|
||||
dattree$BetweenCentrality > 0.5, "Star",
|
||||
dattree$Pattern)
|
||||
dattree$Pattern <- factor(dattree$Pattern)
|
||||
|
||||
|
||||
summary(dattree)
|
||||
|
||||
plot(dattree[, -1], pch = ".")
|
||||
@ -262,19 +248,6 @@ hist(dattree$PathLinearity, breaks = 50, main = "")
|
||||
hist(dattree$Singularity, breaks = 50, main = "")
|
||||
hist(dattree$BetweenCentrality, breaks = 50, main = "")
|
||||
|
||||
# Indicator variable if table was used as info terminal only
|
||||
dattree$InfocardOnly <- factor(datcase$infocardOnly, levels = 0:1, labels = c("no", "yes"))
|
||||
|
||||
# Add pattern to datcase; loosely based on Bousbia et al. (2009)
|
||||
dattree$Pattern <- "Dispersion"
|
||||
dattree$Pattern <- ifelse(dattree$PathLinearity > 0.8 & dattree$Singularity > 0.8, "Scholar",
|
||||
dattree$Pattern)
|
||||
dattree$Pattern <- ifelse(dattree$PathLinearity <= 0.8 &
|
||||
dattree$BetweenCentrality > 0.5, "Star",
|
||||
dattree$Pattern)
|
||||
dattree$Pattern <- factor(dattree$Pattern)
|
||||
|
||||
|
||||
# Remove cases with extreme outliers
|
||||
# TODO: Do I want this???
|
||||
|
||||
@ -298,9 +271,9 @@ hist(dattree$BetweenCentrality, breaks = 50, main = "")
|
||||
|
||||
#--------------- (2) Clustering ---------------
|
||||
|
||||
library(cluster)
|
||||
#library(cluster)
|
||||
|
||||
df <- dattree[1:10000, -1] # remove case variable
|
||||
#df <- dattree[, -1] # remove case variable
|
||||
# TODO: Do I need to scale or does normalization also work?
|
||||
|
||||
# Normalize Duration and Numbers
|
||||
@ -312,42 +285,51 @@ df <- dattree[1:10000, -1] # remove case variable
|
||||
# summary(df)
|
||||
|
||||
# Look at collinearity
|
||||
cor_mat <- cor(df)
|
||||
diag(cor_mat) <- NA
|
||||
heatmap(cor_mat)
|
||||
# cor_mat <- cor(df)
|
||||
# diag(cor_mat) <- NA
|
||||
# heatmap(cor_mat)
|
||||
|
||||
#df <- as.data.frame(scale(dattree[, -1]))
|
||||
|
||||
|
||||
#--------------- (2.2) Hierarchical clustering ---------------
|
||||
|
||||
mat <- daisy(df, metric = "gower")
|
||||
dist_mat <- cluster::daisy(dattree[, -1], metric = "gower")
|
||||
|
||||
# # "Flatten" with PCA
|
||||
# mm <- model.matrix( ~ ., df)[, -1] # remove intercept
|
||||
# tmp <- as.data.frame(lapply(as.data.frame(mm), normalize))
|
||||
# pc <- prcomp(mm)
|
||||
# coor_2d <- as.data.frame(pc$x[, 1:2])
|
||||
# coor_3d <- as.data.frame(pc$x[, 1:3])
|
||||
|
||||
# "Flatten" with MDS
|
||||
coor_2d <- as.data.frame(cmdscale(mat, k = 2))
|
||||
coor_3d <- as.data.frame(cmdscale(mat, k = 3))
|
||||
coor_2d <- as.data.frame(cmdscale(dist_mat, k = 2))
|
||||
coor_3d <- as.data.frame(cmdscale(dist_mat, k = 3))
|
||||
|
||||
# Idea from
|
||||
# https://stats.stackexchange.com/questions/264912/mds-on-large-dataset-r-or-python
|
||||
# https://www.inf.uni-konstanz.de/exalgo/software/mdsj/
|
||||
write.table(as.matrix(dist_mat), file = "mds/dist_mat.txt", row.names = FALSE,
|
||||
col.names = FALSE)
|
||||
# Run java script
|
||||
system("java -jar mdsj.jar -d2 mds/dist_mat.txt mds/mds_coor_2d.txt")
|
||||
system("java -jar mdsj.jar -d3 mds/dist_mat.txt mds/mds_coor_3d.txt")
|
||||
|
||||
coor_2d_java <- read.table("mds/mds_coor_2d.txt", header = FALSE, sep = " ")
|
||||
plot(coor_2d_java)
|
||||
|
||||
|
||||
plot(coor_2d)
|
||||
rgl::plot3d(coor_3d)
|
||||
|
||||
#mat <- dist(df)
|
||||
|
||||
# https://uc-r.github.io/hc_clustering
|
||||
method <- c(average = "average", single = "single", complete = "complete",
|
||||
ward = "ward.D2")
|
||||
ward = "ward")
|
||||
|
||||
hc_method <- function(x) {
|
||||
hclust(mat, method = x)
|
||||
}
|
||||
hcs <- pbapply::pblapply(method, function(x) cluster::agnes(dist_mat, method = x))
|
||||
acs <- pbapply::sapply(hcs, function(x) x$ac)
|
||||
|
||||
hcs <- lapply(method, hc_method)
|
||||
cds <- lapply(hcs, cophenetic)
|
||||
cors <- sapply(cds, cor, y = mat)
|
||||
|
||||
# https://en.wikipedia.org/wiki/Cophenetic_correlation
|
||||
# https://stats.stackexchange.com/questions/195446/choosing-the-right-linkage-method-for-hierarchical-clustering
|
||||
|
||||
hc <- hcs$average
|
||||
hc <- hcs$ward
|
||||
|
||||
# Something like a scree plot (??)
|
||||
plot(rev(hc$height)[1:100], type = "b", pch = 16, cex = .5)
|
||||
@ -356,72 +338,31 @@ k <- 4
|
||||
|
||||
mycols <- c("#78004B", "#FF6900", "#3CB4DC", "#91C86E")
|
||||
|
||||
grp_hclust <- cutree(hc, k = k)
|
||||
cluster <- cutree(as.hclust(hc), k = k)
|
||||
|
||||
table(grp_hclust)
|
||||
table(cluster)
|
||||
|
||||
fviz_cluster(list(data = df, cluster = grp_hclust),
|
||||
palette = mycols,
|
||||
ellipse.type = "convex",
|
||||
show.clust.cent = FALSE,
|
||||
ggtheme = theme_bw())
|
||||
|
||||
plot(coor_2d, col = mycols[grp_hclust])
|
||||
plot(coor_2d, col = mycols[cluster])
|
||||
legend("topleft", paste("Cl", 1:4), col = mycols, pch = 21)
|
||||
rgl::plot3d(coor_3d, col = mycols[grp_hclust])
|
||||
rgl::plot3d(coor_3d, col = mycols[cluster])
|
||||
|
||||
table(datcase[grp_hclust == 1, "Pattern"])
|
||||
table(datcase[grp_hclust == 2, "Pattern"])
|
||||
table(datcase[grp_hclust == 3, "Pattern"])
|
||||
table(datcase[grp_hclust == 4, "Pattern"])
|
||||
table(dattree[cluster == 1, "Pattern"])
|
||||
table(dattree[cluster == 2, "Pattern"])
|
||||
table(dattree[cluster == 3, "Pattern"])
|
||||
table(dattree[cluster == 4, "Pattern"])
|
||||
|
||||
aggregate(. ~ grp_hclust, df, mean)
|
||||
aggregate(. ~ cluster, df, mean)
|
||||
|
||||
aggregate(cbind(duration, distance, scaleSize, rotationDegree, length,
|
||||
nmove, nflipCard, nopenTopic, nopenPopup) ~ grp_hclust, datcase,
|
||||
nmove, nflipCard, nopenTopic, nopenPopup) ~ cluster, datcase,
|
||||
mean)
|
||||
|
||||
#--------------- (2.3) DBSCAN clustering ---------------
|
||||
|
||||
library(dbscan)
|
||||
d1 <- dbscan(df, eps = 1, minPts = ncol(df) + 1)
|
||||
hullplot(df, d1)
|
||||
|
||||
grp_db <- d1$cluster
|
||||
table(grp_db)
|
||||
|
||||
kNNdistplot(df, k = ncol(df))
|
||||
abline(h = 0.2, col = "red")
|
||||
abline(h = 1, col = "red")
|
||||
|
||||
fviz_cluster(list(data = df[grp_db != 0, ], cluster = grp_db[grp_db != 0]),
|
||||
palette = mycols,
|
||||
ellipse.type = "convex",
|
||||
show.clust.cent = FALSE,
|
||||
ggtheme = theme_bw())
|
||||
|
||||
mycols <- c("black", mycols)
|
||||
|
||||
plot(coor_2d, col = mycols[grp_db + 1])
|
||||
legend("topleft", paste("Cl", 0:4), col = mycols, pch = 21)
|
||||
rgl::plot3d(coor_3d, col = mycols[grp_db + 1])
|
||||
|
||||
aggregate(. ~ grp_db, df, mean)
|
||||
|
||||
table(datcase[grp_db == 0, "Pattern"])
|
||||
table(datcase[grp_db == 1, "Pattern"])
|
||||
table(datcase[grp_db == 2, "Pattern"])
|
||||
table(datcase[grp_db == 3, "Pattern"])
|
||||
table(datcase[grp_db == 4, "Pattern"])
|
||||
|
||||
### Look at selected cases ###########################################
|
||||
dattree[grp_db == 0, ]
|
||||
|
||||
tmp <- dat
|
||||
tmp$start <- tmp$date.start
|
||||
tmp$complete <- tmp$date.stop
|
||||
|
||||
alog <- activitylog(tmp[tmp$case == 15, ],
|
||||
alog <- activitylog(tmp[tmp$case == 24016, ],
|
||||
case_id = "case",
|
||||
activity_id = "item",
|
||||
resource_id = "path",
|
||||
@ -433,30 +374,30 @@ rm(tmp)
|
||||
|
||||
######################################################################
|
||||
|
||||
res <- merge(dat, data.frame(case = dattree$case, grp_km, grp_hclust, grp_db),
|
||||
res <- merge(dat, data.frame(case = dattree$case, cluster),
|
||||
by = "case", all.x = TRUE)
|
||||
res <- res[order(res$fileId.start, res$date.start, res$timeMs.start), ]
|
||||
|
||||
xtabs( ~ item + grp_db, res)
|
||||
aggregate(event ~ grp_db, res, table)
|
||||
xtabs( ~ item + cluster, res)
|
||||
aggregate(event ~ cluster, res, table)
|
||||
|
||||
# Look at clusters
|
||||
par(mfrow = c(2, 2))
|
||||
vioplot::vioplot(duration ~ grp_db, res)
|
||||
vioplot::vioplot(distance ~ grp_db, res)
|
||||
vioplot::vioplot(scaleSize ~ grp_db, res)
|
||||
vioplot::vioplot(rotationDegree ~ grp_db, res)
|
||||
vioplot::vioplot(duration ~ cluster, res)
|
||||
vioplot::vioplot(distance ~ cluster, res)
|
||||
vioplot::vioplot(scaleSize ~ cluster, res)
|
||||
vioplot::vioplot(rotationDegree ~ cluster, res)
|
||||
|
||||
aggregate(cbind(duration, distance, scaleSize, rotationDegree) ~ grp_db, res, mean)
|
||||
aggregate(cbind(duration, distance, scaleSize, rotationDegree) ~ grp_db, res, median)
|
||||
aggregate(cbind(duration, distance, scaleSize, rotationDegree) ~ cluster, res, mean)
|
||||
aggregate(cbind(duration, distance, scaleSize, rotationDegree) ~ cluster, res, median)
|
||||
|
||||
write.table(res,
|
||||
file = "results/haum/event_logfiles_pre-corona_with-clusters_cases.csv",
|
||||
file = "results/haum/eventlogs_2019_case-clusters.csv",
|
||||
sep = ";",
|
||||
quote = FALSE,
|
||||
row.names = FALSE)
|
||||
|
||||
save(res, mat, h1, h2, h3, h4, h5, c1, c2, c3, c4, c5, datcase, dattree, df,
|
||||
save(res, dist_mat, hcs, acs, datcase, dattree,
|
||||
file = "results/haum/tmp_user-navigation.RData")
|
||||
|
||||
#--------------- (3) Fit tree ---------------
|
||||
@ -464,28 +405,13 @@ save(res, mat, h1, h2, h3, h4, h5, c1, c2, c3, c4, c5, datcase, dattree, df,
|
||||
library(rpart)
|
||||
library(partykit)
|
||||
|
||||
dattree_db <- dattree[grp_db != 0, -1]
|
||||
dattree_db$grp <- factor(grp_db[grp_db != 0])
|
||||
|
||||
c1 <- rpart(grp ~ ., data = dattree_db, method = "class")
|
||||
c1 <- rpart(as.factor(cluster) ~ ., data = dattree[, -1], method = "class")
|
||||
plot(as.party(c1))
|
||||
|
||||
c2 <- rpart(as.factor(grp_hclust) ~ ., data = dattree[, -1], method = "class")
|
||||
plot(as.party(c2))
|
||||
|
||||
# with conditional tree
|
||||
c2 <- ctree(grp ~ ., data = dattree_db, alpha = 0.05)
|
||||
c2 <- ctree(as.factor(cluster) ~ ., data = dattree[, -1], alpha = 0)
|
||||
plot(c2)
|
||||
|
||||
# with excluded points
|
||||
c5 <- ctree(factor(grp_db) ~ ., data = dattree[, -1], alpha = 0)
|
||||
plot(c5)
|
||||
|
||||
# with excluded points
|
||||
c6 <- ctree(factor(grp_db) ~ ., data = df, alpha = 0)
|
||||
plot(c6)
|
||||
# --> just checking
|
||||
|
||||
#--------------- (4) Investigate variants ---------------
|
||||
|
||||
res$start <- res$date.start
|
||||
@ -501,10 +427,10 @@ trace_explorer(alog, n_traces = 25)
|
||||
# --> sequences of artworks are just too rare
|
||||
|
||||
tr <- traces(alog)
|
||||
trace_length <- sapply(strsplit(tr$trace, ","), length)
|
||||
trace_length <- pbapply::pbsapply(strsplit(tr$trace, ","), length)
|
||||
tr[trace_length > 10, ]
|
||||
|
||||
trace_varied <- sapply(strsplit(tr$trace, ","), function(x) length(unique(x)))
|
||||
trace_varied <- pbapply::pbsapply(strsplit(tr$trace, ","), function(x) length(unique(x)))
|
||||
tr[trace_varied > 1, ]
|
||||
table(tr[trace_varied > 2, "absolute_frequency"])
|
||||
table(tr[trace_varied > 3, "absolute_frequency"])
|
||||
@ -528,7 +454,7 @@ tr[trace_varied == 5 & trace_length > 50, ]
|
||||
# --> every variant exists only once, of course
|
||||
datcase[datcase$nitems == 5 & datcase$length > 50,]
|
||||
|
||||
sapply(datcase[, -c(1, 9)], median)
|
||||
pbapply::pbsapply(datcase[, -c(1, 9)], median)
|
||||
|
||||
#ex <- datcase[datcase$nitems == 4 & datcase$length == 15,]
|
||||
ex <- datcase[datcase$nitems == 5,]
|
||||
@ -569,32 +495,3 @@ for (case in cases) {
|
||||
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
########################### TODO: Still need it?
|
||||
|
||||
|
||||
net <- process_map(alog, render = FALSE)
|
||||
#DiagrammeR::get_node_df(net)
|
||||
|
||||
DiagrammeR::get_node_info(net)
|
||||
|
||||
DiagrammeR::get_degree_distribution(net)
|
||||
|
||||
DiagrammeR::get_degree_in(net)
|
||||
DiagrammeR::get_degree_out(net)
|
||||
DiagrammeR::get_degree_total(net)
|
||||
|
||||
|
||||
N <- DiagrammeR::count_nodes(net) - 2 # Do not count start and stop nodes
|
||||
|
||||
dc <- DiagrammeR::get_degree_total(net)[1:N, "total_degree"] / (N - 1)
|
||||
|
||||
inet <- DiagrammeR::to_igraph(net)
|
||||
igraph::centr_degree(inet, loops = FALSE)
|
||||
igraph::centr_betw(inet)
|
||||
igraph::centr_clo(inet)
|
||||
|
||||
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user