Mostly updated file paths
This commit is contained in:
		
							parent
							
								
									b762968774
								
							
						
					
					
						commit
						43c7f34645
					
				@ -8,8 +8,8 @@
 | 
			
		||||
#         ../data/metadata/feiertage.csv
 | 
			
		||||
#         ../data/metadata/schulferien_2016-2018_NI.csv
 | 
			
		||||
#         ../data/metadata/schulferien_2019-2025_NI.csv
 | 
			
		||||
# output: raw_logfiles_<timestamp>.csv
 | 
			
		||||
#         event_logfiles_<timestamp>.csv
 | 
			
		||||
# output: results/raw_logfiles_<timestamp>.csv
 | 
			
		||||
#         results/event_logfiles_<timestamp>.csv
 | 
			
		||||
#
 | 
			
		||||
# last mod: 2024-02-23, NW
 | 
			
		||||
 | 
			
		||||
@ -29,12 +29,12 @@ folders <- dir(path)
 | 
			
		||||
datraw <- parse_logfiles(folders, path)
 | 
			
		||||
# 91 corrupt lines have been found and removed from the data set
 | 
			
		||||
 | 
			
		||||
# datraw <- read.table("results/haum/raw_logfiles_2023-10-25_16-20-45.csv",
 | 
			
		||||
# datraw <- read.table("results/raw_logfiles_2023-10-25_16-20-45.csv",
 | 
			
		||||
#                      sep = ";", header = TRUE)
 | 
			
		||||
 | 
			
		||||
## Export data
 | 
			
		||||
 | 
			
		||||
write.table(datraw, paste0("results/haum/raw_logfiles_", now, ".csv"),
 | 
			
		||||
write.table(datraw, paste0("results/raw_logfiles_", now, ".csv"),
 | 
			
		||||
            sep = ";", row.names = FALSE)
 | 
			
		||||
 | 
			
		||||
#--------------- (2) Create event logs ---------------
 | 
			
		||||
@ -131,6 +131,6 @@ dat2 <- dat2[order(dat2$fileId.start, dat2$date.start, dat2$timeMs.start), ]
 | 
			
		||||
 | 
			
		||||
## Export data
 | 
			
		||||
 | 
			
		||||
write.table(dat2, paste0("results/haum/event_logfiles_", now, ".csv"),
 | 
			
		||||
write.table(dat2, paste0("results/event_logfiles_", now, ".csv"),
 | 
			
		||||
            sep = ";", row.names = FALSE)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@ -9,8 +9,8 @@
 | 
			
		||||
#           (3.4) Artwork sequences
 | 
			
		||||
#           (3.5) Topics
 | 
			
		||||
#
 | 
			
		||||
# input:  results/haum/event_logfiles_2024-02-21_16-07-33.csv
 | 
			
		||||
#         results/haum/raw_logfiles_2024-02-21_16-07-33.csv
 | 
			
		||||
# input:  results/event_logfiles_2024-02-21_16-07-33.csv
 | 
			
		||||
#         results/raw_logfiles_2024-02-21_16-07-33.csv
 | 
			
		||||
# output: results/figures/counts_item.pdf
 | 
			
		||||
#         results/figures/counts_item_firsttouch.pdf
 | 
			
		||||
#         results/figures/duration.pdf
 | 
			
		||||
@ -41,7 +41,7 @@
 | 
			
		||||
 | 
			
		||||
#--------------- (1) Read data ---------------
 | 
			
		||||
 | 
			
		||||
datlogs <- read.table("results/haum/event_logfiles_2024-02-21_16-07-33.csv",
 | 
			
		||||
datlogs <- read.table("results/event_logfiles_2024-02-21_16-07-33.csv",
 | 
			
		||||
                      colClasses = c("character", "character", "POSIXct",
 | 
			
		||||
                                     "POSIXct", "character", "integer",
 | 
			
		||||
                                     "numeric", "character", "character",
 | 
			
		||||
@ -54,7 +54,7 @@ datlogs$event <- factor(datlogs$event, levels = c("move", "flipCard",
 | 
			
		||||
                                                  "openTopic",
 | 
			
		||||
                                                  "openPopup"))
 | 
			
		||||
 | 
			
		||||
datraw <- read.table("results/haum/raw_logfiles_2024-02-21_16-07-33.csv",
 | 
			
		||||
datraw <- read.table("results/raw_logfiles_2024-02-21_16-07-33.csv",
 | 
			
		||||
                     sep = ";", header = TRUE)
 | 
			
		||||
 | 
			
		||||
# Add weekdays to data frame
 | 
			
		||||
 | 
			
		||||
@ -1,25 +1,24 @@
 | 
			
		||||
# 04_conformance-checking.py
 | 
			
		||||
#
 | 
			
		||||
# content: (1) Load data and create event log
 | 
			
		||||
#          (2) Infos for items
 | 
			
		||||
#          (2) Check against normative Petri Net
 | 
			
		||||
#
 | 
			
		||||
# input:  results/haum/event_logfiles_2024-02-21_16-07-33.csv
 | 
			
		||||
#         results/haum/conformative_petrinet_con.pnml
 | 
			
		||||
# output: results/processmaps/dfg_complete_python.png
 | 
			
		||||
#         results/eval_all-miners_complete.csv
 | 
			
		||||
# input:  results/event_logfiles_2024-02-21_16-07-33.csv
 | 
			
		||||
#         results/normative_petrinet.pnml
 | 
			
		||||
# output: results/eval_all-miners_complete.csv
 | 
			
		||||
#         results/eval_all-miners_clean.csv
 | 
			
		||||
#         results/processmaps/petrinet_conformative.png
 | 
			
		||||
#         results/processmaps/petrinet_heuristics_clean.png
 | 
			
		||||
#         results/processmaps/petrinet_alpha_clean.png
 | 
			
		||||
#         results/processmaps/petrinet_inductive_clean.png
 | 
			
		||||
#         results/processmaps/petrinet_ilp_clean.png
 | 
			
		||||
#         results/processmaps/bpmn_conformative.png
 | 
			
		||||
#         results/processmaps/bpmn_inductive_clean.png
 | 
			
		||||
#         results/processmaps/bpmn_ilp_clean.png
 | 
			
		||||
#         results/processmaps/bpmn_alpha_clean.png
 | 
			
		||||
#         results/processmaps/bpmn_heuristics_clean.png
 | 
			
		||||
#         ../../thesis/figures/petrinet_normative.png
 | 
			
		||||
#         ../../thesis/figures/petrinet_heuristics_clean.png
 | 
			
		||||
#         ../../thesis/figures/petrinet_alpha_clean.png
 | 
			
		||||
#         ../../thesis/figures/petrinet_inductive_clean.png
 | 
			
		||||
#         ../../thesis/figures/petrinet_ilp_clean.png
 | 
			
		||||
#         ../../thesis/figures/bpmn_normative.png
 | 
			
		||||
#         ../../thesis/figures/bpmn_inductive_clean.png
 | 
			
		||||
#         ../../thesis/figures/bpmn_ilp_clean.png
 | 
			
		||||
#         ../../thesis/figures/bpmn_alpha_clean.png
 | 
			
		||||
#         ../../thesis/figures/bpmn_heuristics_clean.png
 | 
			
		||||
#
 | 
			
		||||
# last mod: 2024-03-06
 | 
			
		||||
# last mod: 2024-03-22
 | 
			
		||||
 | 
			
		||||
import pm4py
 | 
			
		||||
import pandas as pd
 | 
			
		||||
@ -29,13 +28,13 @@ from python_helpers import eval_pm, pn_infos_miner
 | 
			
		||||
 | 
			
		||||
#--------------- (1) Load data and create event logs ---------------
 | 
			
		||||
 | 
			
		||||
dat = pd.read_csv("results/haum/event_logfiles_2024-02-21_16-07-33.csv", sep = ";")
 | 
			
		||||
dat = pd.read_csv("results/event_logfiles_2024-02-21_16-07-33.csv", sep = ";")
 | 
			
		||||
 | 
			
		||||
event_log = pm4py.format_dataframe(dat, case_id = "path",
 | 
			
		||||
                                   activity_key = "event",
 | 
			
		||||
                                   timestamp_key = "date.start")
 | 
			
		||||
 | 
			
		||||
###### Descriptives of log data ######
 | 
			
		||||
## Descriptives of log data
 | 
			
		||||
 | 
			
		||||
# Distribution of events
 | 
			
		||||
event_log.event.value_counts()
 | 
			
		||||
@ -57,9 +56,9 @@ len(variants_no_move)
 | 
			
		||||
sorted_variants_no_move = dict(sorted(variants_no_move.items(), key=lambda item: item[1], reverse = True))
 | 
			
		||||
{k: sorted_variants_no_move[k] for k in list(sorted_variants_no_move)[:20]}
 | 
			
		||||
 | 
			
		||||
###### Check against "conformative" Petri Net ######
 | 
			
		||||
#--------------- (2) Check against normative Petri Net ---------------
 | 
			
		||||
 | 
			
		||||
basenet, initial_marking, final_marking = pm4py.read_pnml("results/haum/conformative_petrinet_con.pnml")
 | 
			
		||||
basenet, initial_marking, final_marking = pm4py.read_pnml("results/normative_petrinet.pnml")
 | 
			
		||||
 | 
			
		||||
# TBR
 | 
			
		||||
replayed_traces = pm4py.conformance_diagnostics_token_based_replay(event_log, basenet, initial_marking, final_marking)
 | 
			
		||||
@ -93,23 +92,13 @@ event_log[event_log["@@case_index"] == index_broken[0]].item.unique().tolist()
 | 
			
		||||
event_log[event_log["@@case_index"] == index_broken[0]]["fileId.start"].unique().tolist()
 | 
			
		||||
# --> logging error in raw file
 | 
			
		||||
 | 
			
		||||
## Footprints                      
 | 
			
		||||
from pm4py.algo.discovery.footprints import algorithm as footprints_discovery
 | 
			
		||||
from pm4py.visualization.footprints import visualizer as fp_visualizer
 | 
			
		||||
fp_log = footprints_discovery.apply(event_log, variant=footprints_discovery.Variants.ENTIRE_EVENT_LOG)
 | 
			
		||||
fp_net = footprints_discovery.apply(basenet, initial_marking, final_marking)
 | 
			
		||||
gviz = fp_visualizer.apply(fp_net, parameters={fp_visualizer.Variants.SINGLE.value.Parameters.FORMAT: "svg"})
 | 
			
		||||
fp_visualizer.view(gviz)
 | 
			
		||||
 | 
			
		||||
efg_graph = pm4py.discover_eventually_follows_graph(event_log)
 | 
			
		||||
 | 
			
		||||
## Fitting different miners
 | 
			
		||||
 | 
			
		||||
eval = pd.DataFrame(columns = ["fitness", "precision", "generalizability",
 | 
			
		||||
                               "simplicity", "sound", "narcs", "ntrans",
 | 
			
		||||
                               "nplaces", "nvariants", "mostfreq"])
 | 
			
		||||
 | 
			
		||||
for miner in ["conformative", "alpha", "heuristics", "inductive", "ilp"]:
 | 
			
		||||
for miner in ["normative", "alpha", "heuristics", "inductive", "ilp"]:
 | 
			
		||||
    eval = pd.concat([eval, pn_infos_miner(event_log, miner)])
 | 
			
		||||
 | 
			
		||||
eval.to_csv("results/eval_all-miners_complete.csv", sep = ";")
 | 
			
		||||
@ -121,7 +110,7 @@ eval_clean = pd.DataFrame(columns = ["fitness", "precision", "generalizability",
 | 
			
		||||
                                     "simplicity", "sound", "narcs", "ntrans",
 | 
			
		||||
                                     "nplaces", "nvariants", "mostfreq"])
 | 
			
		||||
 | 
			
		||||
for miner in ["conformative", "alpha", "heuristics", "inductive", "ilp"]:
 | 
			
		||||
for miner in ["normative", "alpha", "heuristics", "inductive", "ilp"]:
 | 
			
		||||
    eval_clean = pd.concat([eval_clean, pn_infos_miner(event_log_clean, miner)])
 | 
			
		||||
 | 
			
		||||
eval_clean.to_csv("results/eval_all-miners_clean.csv", sep = ";")
 | 
			
		||||
@ -129,28 +118,27 @@ eval_clean.to_csv("results/eval_all-miners_clean.csv", sep = ";")
 | 
			
		||||
## Directly-follows graph
 | 
			
		||||
dfg, start_activities, end_activities = pm4py.discover_dfg(event_log_clean)
 | 
			
		||||
pm4py.view_dfg(dfg, start_activities, end_activities)
 | 
			
		||||
pm4py.save_vis_dfg(dfg, start_activities, end_activities, "results/processmaps/dfg_complete_python.png")
 | 
			
		||||
 | 
			
		||||
## Export petri nets
 | 
			
		||||
pm4py.vis.save_vis_petri_net(basenet, initial_marking, final_marking, "results/processmaps/petrinet_conformative.png")
 | 
			
		||||
pm4py.vis.save_vis_petri_net(basenet, initial_marking, final_marking,
 | 
			
		||||
        "../../thesis/figures/petrinet_normative.png")
 | 
			
		||||
h_net, h_im, h_fm = pm4py.discover_petri_net_heuristics(event_log_clean)
 | 
			
		||||
pm4py.vis.save_vis_petri_net(h_net, h_im, h_fm, "results/processmaps/petrinet_heuristics_clean.png")
 | 
			
		||||
pm4py.vis.save_vis_petri_net(h_net, h_im, h_fm, "../../thesis/figures/petrinet_heuristics_clean.png")
 | 
			
		||||
a_net, a_im, a_fm = pm4py.discover_petri_net_alpha(event_log_clean)
 | 
			
		||||
pm4py.vis.save_vis_petri_net(a_net, a_im, a_fm, "results/processmaps/petrinet_alpha_clean.png")
 | 
			
		||||
pm4py.vis.save_vis_petri_net(a_net, a_im, a_fm, "../../thesis/figures/petrinet_alpha_clean.png")
 | 
			
		||||
i_net, i_im, i_fm = pm4py.discover_petri_net_inductive(event_log_clean)
 | 
			
		||||
pm4py.vis.save_vis_petri_net(i_net, i_im, i_fm, "results/processmaps/petrinet_inductive_clean.png")
 | 
			
		||||
pm4py.vis.save_vis_petri_net(i_net, i_im, i_fm, "../../thesis/figures/petrinet_inductive_clean.png")
 | 
			
		||||
ilp_net, ilp_im, ilp_fm = pm4py.discover_petri_net_ilp(event_log_clean)
 | 
			
		||||
pm4py.vis.save_vis_petri_net(ilp_net, ilp_im, ilp_fm, "results/processmaps/petrinet_ilp_clean.png")
 | 
			
		||||
pm4py.vis.save_vis_petri_net(ilp_net, ilp_im, ilp_fm, "../../thesis/figures/petrinet_ilp_clean.png")
 | 
			
		||||
 | 
			
		||||
# convert to BPMN
 | 
			
		||||
base_bpmn = pm4py.convert.convert_to_bpmn(basenet, initial_marking, final_marking)
 | 
			
		||||
pm4py.vis.save_vis_bpmn(base_bpmn, "results/processmaps/bpmn_conformative.png")
 | 
			
		||||
pm4py.vis.save_vis_bpmn(base_bpmn, "../../thesis/figures/bpmn_normative.png")
 | 
			
		||||
i_bpmn = pm4py.convert.convert_to_bpmn(i_net, i_im, i_fm)
 | 
			
		||||
pm4py.vis.save_vis_bpmn(i_bpmn, "results/processmaps/bpmn_inductive_clean.png")
 | 
			
		||||
pm4py.vis.save_vis_bpmn(i_bpmn, "../../thesis/figures/bpmn_inductive_clean.png")
 | 
			
		||||
ilp_bpmn = pm4py.convert.convert_to_bpmn(ilp_net, ilp_im, ilp_fm)
 | 
			
		||||
pm4py.vis.save_vis_bpmn(ilp_bpmn, "results/processmaps/bpmn_ilp_clean.png")
 | 
			
		||||
pm4py.vis.save_vis_bpmn(ilp_bpmn, "../../thesis/figures/bpmn_ilp_clean.png")
 | 
			
		||||
a_bpmn = pm4py.convert.convert_to_bpmn(a_net, a_im, a_fm)
 | 
			
		||||
pm4py.vis.save_vis_bpmn(a_bpmn, "results/processmaps/bpmn_alpha_clean.png")
 | 
			
		||||
pm4py.vis.save_vis_bpmn(a_bpmn, "../../thesis/figures/bpmn_alpha_clean.png")
 | 
			
		||||
h_bpmn = pm4py.convert.convert_to_bpmn(h_net, h_im, h_fm)
 | 
			
		||||
pm4py.vis.save_vis_bpmn(h_bpmn, "results/processmaps/bpmn_heuristics_clean.png")
 | 
			
		||||
 | 
			
		||||
pm4py.vis.save_vis_bpmn(h_bpmn, "../../thesis/figures/bpmn_heuristics_clean.png")
 | 
			
		||||
 | 
			
		||||
@ -5,22 +5,23 @@
 | 
			
		||||
#          (3) DFG for complete data
 | 
			
		||||
#          (4) Export data frame for analyses
 | 
			
		||||
#
 | 
			
		||||
# input:  results/haum/event_logfiles_2024-02-21_16-07-33.csv
 | 
			
		||||
#         results/haum/raw_logfiles_2024-02-21_16-07-33.csv
 | 
			
		||||
# output: results/haum/eventlogs_pre-corona_cleaned.RData
 | 
			
		||||
#         results/haum/eventlogs_pre-corona_cleaned.csv
 | 
			
		||||
# input:  results/event_logfiles_2024-02-21_16-07-33.csv
 | 
			
		||||
#         results/raw_logfiles_2024-02-21_16-07-33.csv
 | 
			
		||||
# output: results/eventlogs_pre-corona_cleaned.RData
 | 
			
		||||
#         results/eventlogs_pre-corona_cleaned.csv
 | 
			
		||||
#         ../../thesis/figures/dfg_complete_WFnet_R.pdf
 | 
			
		||||
#
 | 
			
		||||
# last mod: 2024-03-06
 | 
			
		||||
# last mod: 2024-03-23
 | 
			
		||||
 | 
			
		||||
# setwd("C:/Users/nwickelmaier/Nextcloud/Documents/MDS/2023ss/60100_master_thesis/analysis/code")
 | 
			
		||||
 | 
			
		||||
#--------------- (1) Look at broken trace ---------------
 | 
			
		||||
 | 
			
		||||
datraw <- read.table("results/haum/raw_logfiles_2024-02-21_16-07-33.csv",
 | 
			
		||||
datraw <- read.table("results/raw_logfiles_2024-02-21_16-07-33.csv",
 | 
			
		||||
                     header = TRUE, sep = ";")
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
datlogs <- read.table("results/haum/event_logfiles_2024-02-21_16-07-33.csv",
 | 
			
		||||
datlogs <- read.table("results/event_logfiles_2024-02-21_16-07-33.csv",
 | 
			
		||||
                      colClasses = c("character", "character", "POSIXct",
 | 
			
		||||
                                     "POSIXct", "character", "integer",
 | 
			
		||||
                                     "numeric", "character", "character",
 | 
			
		||||
@ -84,7 +85,7 @@ dfg <- processmapR::process_map(alog,
 | 
			
		||||
  render     = FALSE)
 | 
			
		||||
 | 
			
		||||
processmapR::export_map(dfg,
 | 
			
		||||
  file_name = paste0("results/processmaps/dfg_complete_WFnet_R.pdf"),
 | 
			
		||||
  file_name = paste0("../../thesis/figures/dfg_complete_WFnet_R.pdf"),
 | 
			
		||||
  file_type = "pdf")
 | 
			
		||||
 | 
			
		||||
rm(tmp)
 | 
			
		||||
@ -109,10 +110,10 @@ dat <- datlogs[as.Date(datlogs$date.start) < "2020-03-13", ]
 | 
			
		||||
# Remove corrupt trace
 | 
			
		||||
dat <- dat[dat$path != 106098, ]
 | 
			
		||||
 | 
			
		||||
save(dat, file = "results/haum/eventlogs_pre-corona_cleaned.RData")
 | 
			
		||||
save(dat, file = "results/eventlogs_pre-corona_cleaned.RData")
 | 
			
		||||
 | 
			
		||||
write.table(dat,
 | 
			
		||||
            file = "results/haum/eventlogs_pre-corona_cleaned.csv",
 | 
			
		||||
            file = "results/eventlogs_pre-corona_cleaned.csv",
 | 
			
		||||
            sep = ";",
 | 
			
		||||
            quote = FALSE,
 | 
			
		||||
            row.names = FALSE)
 | 
			
		||||
 | 
			
		||||
@ -3,10 +3,10 @@
 | 
			
		||||
# content: (1) Load data and create event log
 | 
			
		||||
#          (2) Infos for items
 | 
			
		||||
#
 | 
			
		||||
# input:  results/haum/eventlogs_pre-corona_cleaned.csv
 | 
			
		||||
# output: results/haum/pn_infos_items.csv
 | 
			
		||||
# input:  results/eventlogs_pre-corona_cleaned.csv
 | 
			
		||||
# output: results/pn_infos_items.csv
 | 
			
		||||
#
 | 
			
		||||
# last mod: 2024-03-06
 | 
			
		||||
# last mod: 2024-03-22
 | 
			
		||||
 | 
			
		||||
import pm4py
 | 
			
		||||
import pandas as pd
 | 
			
		||||
@ -16,7 +16,7 @@ from python_helpers import eval_pm, pn_infos
 | 
			
		||||
 | 
			
		||||
#--------------- (1) Load data and create event logs ---------------
 | 
			
		||||
 | 
			
		||||
dat = pd.read_csv("results/haum/eventlogs_pre-corona_cleaned", sep = ";")
 | 
			
		||||
dat = pd.read_csv("results/eventlogs_pre-corona_cleaned", sep = ";")
 | 
			
		||||
 | 
			
		||||
log_path = pm4py.format_dataframe(dat, case_id = "path", activity_key = "event",
 | 
			
		||||
                                  timestamp_key = "date.start")
 | 
			
		||||
@ -33,5 +33,5 @@ for item in log_path.item.unique().tolist():
 | 
			
		||||
eval = eval.sort_index()
 | 
			
		||||
 | 
			
		||||
# Export
 | 
			
		||||
eval.to_csv("results/haum/pn_infos_items.csv", sep = ";")
 | 
			
		||||
eval.to_csv("results/pn_infos_items.csv", sep = ";")
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@ -7,12 +7,12 @@
 | 
			
		||||
#          (2) Clustering
 | 
			
		||||
#          (3) Visualization with pictures
 | 
			
		||||
#
 | 
			
		||||
# input:  results/haum/eventlogs_pre-corona_cleaned.RData
 | 
			
		||||
#         results/haum/pn_infos_items.csv
 | 
			
		||||
# output: results/haum/eventlogs_pre-corona_item-clusters.csv
 | 
			
		||||
# input:  results/eventlogs_pre-corona_cleaned.RData
 | 
			
		||||
#         results/pn_infos_items.csv
 | 
			
		||||
# output: results/eventlogs_pre-corona_item-clusters.csv
 | 
			
		||||
#         ../../thesis/figures/data/clustering_items.RData"
 | 
			
		||||
#
 | 
			
		||||
# last mod: 2024-03-21
 | 
			
		||||
# last mod: 2024-03-22
 | 
			
		||||
 | 
			
		||||
# setwd("C:/Users/nwickelmaier/Nextcloud/Documents/MDS/2023ss/60100_master_thesis/analysis/code")
 | 
			
		||||
 | 
			
		||||
@ -22,11 +22,11 @@ source("R_helpers.R")
 | 
			
		||||
 | 
			
		||||
#--------------- (1.1) Read log event data ---------------
 | 
			
		||||
 | 
			
		||||
load("results/haum/eventlogs_pre-corona_cleaned.RData")
 | 
			
		||||
load("results/eventlogs_pre-corona_cleaned.RData")
 | 
			
		||||
 | 
			
		||||
#--------------- (1.2) Read infos for PM for items ---------------
 | 
			
		||||
 | 
			
		||||
datitem <- read.table("results/haum/pn_infos_items.csv", header = TRUE,
 | 
			
		||||
datitem <- read.table("results/pn_infos_items.csv", header = TRUE,
 | 
			
		||||
                      sep = ";", row.names = 1)
 | 
			
		||||
 | 
			
		||||
#--------------- (1.3) Extract additional infos for clustering ---------------
 | 
			
		||||
@ -126,6 +126,28 @@ item <- sprintf("%03d", as.numeric(gsub("item_([0-9]{3})", "\\1",
 | 
			
		||||
res <- merge(dat, data.frame(item, cluster), by = "item", all.x = TRUE)
 | 
			
		||||
res <- res[order(res$fileId.start, res$date.start, res$timeMs.start), ]
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
# DFGs for clusters
 | 
			
		||||
res$start <- res$date.start
 | 
			
		||||
res$complete <- res$date.stop
 | 
			
		||||
 | 
			
		||||
for (clst in sort(unique(res$cluster))) {
 | 
			
		||||
 | 
			
		||||
  alog <- bupaR::activitylog(res[res$cluster == clst, ],
 | 
			
		||||
    case_id     = "path",
 | 
			
		||||
    activity_id = "event",
 | 
			
		||||
    resource_id = "item",
 | 
			
		||||
    timestamps  = c("start", "complete"))
 | 
			
		||||
 | 
			
		||||
  processmapR::process_map(alog,
 | 
			
		||||
    type_nodes = processmapR::frequency("relative", color_scale = "Greys"),
 | 
			
		||||
    sec_nodes  = processmapR::frequency("absolute"),
 | 
			
		||||
    type_edges = processmapR::frequency("relative", color_edges = "#FF6900"),
 | 
			
		||||
    sec_edges  = processmapR::frequency("absolute"),
 | 
			
		||||
    rankdir    = "LR")
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
# Look at clusters
 | 
			
		||||
par(mfrow = c(2,2))
 | 
			
		||||
vioplot::vioplot(duration ~ cluster, res)
 | 
			
		||||
@ -134,7 +156,7 @@ vioplot::vioplot(scaleSize ~ cluster, res)
 | 
			
		||||
vioplot::vioplot(rotationDegree ~ cluster, res)
 | 
			
		||||
 | 
			
		||||
write.table(res,
 | 
			
		||||
            file = "results/haum/eventlogs_pre-corona_item-clusters.csv",
 | 
			
		||||
            file = "results/eventlogs_pre-corona_item-clusters.csv",
 | 
			
		||||
            sep = ";",
 | 
			
		||||
            quote = FALSE,
 | 
			
		||||
            row.names = FALSE)
 | 
			
		||||
 | 
			
		||||
@ -36,8 +36,8 @@ def pn_infos_miner(log, miner):
 | 
			
		||||
        net, im, fm = pm4py.discover_petri_net_ilp(log)
 | 
			
		||||
    elif miner == "inductive":
 | 
			
		||||
        net, im, fm = pm4py.discover_petri_net_inductive(log)
 | 
			
		||||
    elif miner == "conformative":
 | 
			
		||||
        net, im, fm = pm4py.read_pnml("results/haum/conformative_petrinet_con.pnml")
 | 
			
		||||
    elif miner == "normative":
 | 
			
		||||
        net, im, fm = pm4py.read_pnml("results/normative_petrinet.pnml")
 | 
			
		||||
 | 
			
		||||
    eval = eval_append(log, net, im, fm)
 | 
			
		||||
    eval.index = [miner]
 | 
			
		||||
 | 
			
		||||
		Loading…
	
	
			
			x
			
			
		
	
		Reference in New Issue
	
	Block a user