Re-ran preprocessing and updated files; worked on user navigation behavior -- intermediate step
This commit is contained in:
parent
3b518a553a
commit
42f12b9256
@ -126,6 +126,8 @@ dat1 <- merge(datlogs, hd, by.x = "date", by.y = "date", all.x = TRUE)
|
||||
dat2 <- merge(dat1, sfdat, by.x = "date", by.y = "date", all.x = TRUE)
|
||||
|
||||
dat2$date <- NULL
|
||||
dat2 <- dat2[order(dat2$fileId.start, dat2$date.start, dat2$timeMs.start), ]
|
||||
|
||||
|
||||
## Export data
|
||||
|
||||
|
@ -9,7 +9,7 @@
|
||||
# (3.4) Artwork sequences
|
||||
# (3.5) Topics
|
||||
#
|
||||
# input: results/haum/event_logfiles_glossar_2023-12-28_09-49-43.csv
|
||||
# input: results/haum/event_logfiles_2024-02-21_16-07-33.csv
|
||||
# output:
|
||||
#
|
||||
# last mod: 2023-11-15, NW
|
||||
@ -27,7 +27,7 @@ library(bupaverse)
|
||||
|
||||
#--------------- (1) Read data ---------------
|
||||
|
||||
datlogs <- read.table("results/haum/event_logfiles_2024-01-18_09-58-52.csv",
|
||||
datlogs <- read.table("results/haum/event_logfiles_2024-02-21_16-07-33.csv",
|
||||
colClasses = c("character", "character", "POSIXct",
|
||||
"POSIXct", "character", "integer",
|
||||
"numeric", "character", "character",
|
||||
|
@ -5,7 +5,7 @@ from python_helpers import eval_pm, pn_infos_miner
|
||||
|
||||
###### Load data and create event logs ######
|
||||
|
||||
dat = pd.read_csv("results/haum/event_logfiles_2024-01-18_09-58-52.csv", sep = ";")
|
||||
dat = pd.read_csv("results/haum/event_logfiles_2024-02-21_16-07-33.csv", sep = ";")
|
||||
|
||||
event_log = pm4py.format_dataframe(dat, case_id = "path",
|
||||
activity_key = "event",
|
||||
@ -53,6 +53,7 @@ for i in range(len(replayed_traces)):
|
||||
set(l1)
|
||||
x1 = np.array(l1)
|
||||
index_broken = np.where(x1 == 1)[0].tolist()
|
||||
len(index_broken)
|
||||
|
||||
set(l3)
|
||||
l4.count([])
|
||||
|
@ -2,11 +2,11 @@
|
||||
|
||||
#--------------- (1) Look at broken trace ---------------
|
||||
|
||||
datraw <- read.table("results/haum/raw_logfiles_2024-01-18_09-58-52.csv",
|
||||
datraw <- read.table("results/haum/raw_logfiles_2024-02-21_16-07-33.csv",
|
||||
header = TRUE, sep = ";")
|
||||
|
||||
|
||||
datlogs <- read.table("results/haum/event_logfiles_2024-01-18_09-58-52.csv",
|
||||
datlogs <- read.table("results/haum/event_logfiles_2024-02-21_16-07-33.csv",
|
||||
colClasses = c("character", "character", "POSIXct",
|
||||
"POSIXct", "character", "integer",
|
||||
"numeric", "character", "character",
|
||||
|
@ -6,7 +6,7 @@ from python_helpers import eval_pm, pn_infos
|
||||
|
||||
###### Load data and create event logs ######
|
||||
|
||||
dat = pd.read_csv("results/haum/event_logfiles_2024-01-18_09-58-52.csv", sep = ";")
|
||||
dat = pd.read_csv("results/haum/event_logfiles_2024-02-21_16-07-33.csv", sep = ";")
|
||||
dat = dat[dat["date.start"] < "2020-03-13"]
|
||||
# --> only pre corona (before artworks were updated)
|
||||
dat = dat[dat["path"] != 106098]
|
@ -1,4 +1,4 @@
|
||||
# 08_item-clustering.R
|
||||
# 07_item-clustering.R
|
||||
#
|
||||
# content: (1) Read data
|
||||
# (1.1) Read log event data
|
||||
@ -7,11 +7,11 @@
|
||||
# (2) Clustering
|
||||
# (3) Visualization with pictures
|
||||
#
|
||||
# input: results/haum/event_logfiles_2024-01-18_09-58-52.csv
|
||||
# input: results/haum/event_logfiles_2024-02-21_16-07-33.csv
|
||||
# results/haum/pn_infos_items.csv
|
||||
# output: results/haum/event_logfiles_pre-corona_with-clusters.csv
|
||||
#
|
||||
# last mod: 2024-01-30
|
||||
# last mod: 2024-02-23
|
||||
|
||||
|
||||
# setwd("C:/Users/nwickelmaier/Nextcloud/Documents/MDS/2023ss/60100_master_thesis/analysis/code")
|
||||
@ -23,7 +23,7 @@ library(factoextra)
|
||||
|
||||
#--------------- (1.1) Read log event data ---------------
|
||||
|
||||
dat0 <- read.table("results/haum/event_logfiles_2024-01-18_09-58-52.csv",
|
||||
dat0 <- read.table("results/haum/event_logfiles_2024-02-21_16-07-33.csv",
|
||||
colClasses = c("character", "character", "POSIXct",
|
||||
"POSIXct", "character", "integer",
|
||||
"numeric", "character", "character",
|
||||
@ -48,21 +48,47 @@ datitem <- read.table("results/haum/pn_infos_items.csv", header = TRUE,
|
||||
|
||||
#--------------- (1.3) Extract additional infos for clustering ---------------
|
||||
|
||||
datitem$duration <- aggregate(duration ~ item, dat, mean)$duration
|
||||
dat_split <- split(dat, ~ path)
|
||||
|
||||
time_minmax <- function(subdata) {
|
||||
subdata$min_time <- min(subdata$timeMs.start)
|
||||
if (all(is.na(subdata$timeMs.stop))) {
|
||||
subdata$max_time <- NA
|
||||
} else {
|
||||
subdata$max_time <- max(subdata$timeMs.stop, na.rm = TRUE)
|
||||
}
|
||||
subdata
|
||||
}
|
||||
|
||||
dat_list <- pbapply::pblapply(dat_split, time_minmax)
|
||||
dat_minmax <- dplyr::bind_rows(dat_list)
|
||||
|
||||
datpath <- aggregate(duration ~ item + path, dat, mean, na.action = NULL)
|
||||
|
||||
datpath$min_time <- aggregate(min_time ~ path, dat_minmax, unique, na.action = NULL)$min_time
|
||||
datpath$max_time <- aggregate(max_time ~ path, dat_minmax, unique, na.action = NULL)$max_time
|
||||
|
||||
datpath$duration_path <- datpath$max_time - datpath$min_time
|
||||
|
||||
# average duration per path
|
||||
datitem$duration <- aggregate(duration ~ item, datpath, mean)$duration
|
||||
datitem$distance <- aggregate(distance ~ item, dat, mean)$distance
|
||||
datitem$scaleSize <- aggregate(scaleSize ~ item, dat, mean)$scaleSize
|
||||
datitem$rotationDegree <- aggregate(rotationDegree ~ item, dat, mean)$rotationDegree
|
||||
datitem$npaths <- aggregate(path ~ item, dat, function(x) length(unique(x)))$path
|
||||
datitem$ncases <- aggregate(case ~ item, dat, function(x) length(unique(x)))$case
|
||||
datitem$ntopics <- aggregate(topic ~ item, dat, function(x) length(unique(x)))$topic
|
||||
datitem$mostfreq_num <- as.numeric(gsub(".*: (.*)}", "\\1", datitem$mostfreq))
|
||||
datitem$nmoves <- aggregate(event ~ item, dat, table)$event[,"move"]
|
||||
datitem$nflipCard <- aggregate(event ~ item, dat, table)$event[,"flipCard"]
|
||||
datitem$nopenTopic <- aggregate(event ~ item, dat, table)$event[,"openTopic"]
|
||||
datitem$nopenPopup <- aggregate(event ~ item, dat, table)$event[,"openPopup"]
|
||||
|
||||
#--------------- (2) Clustering ---------------
|
||||
|
||||
df <- datitem[, c("precision", "generalizability", "nvariants",
|
||||
"mostfreq_num", "duration", "distance", "scaleSize",
|
||||
"rotationDegree", "npaths", "ncases", "ntopics")] |>
|
||||
scale()
|
||||
df <- datitem[, c("precision", "generalizability", "nvariants", "duration",
|
||||
"distance", "scaleSize", "rotationDegree", "npaths",
|
||||
"ncases", "nmoves", "nopenTopic", "nopenPopup")] |>
|
||||
scale()
|
||||
|
||||
mat <- dist(df)
|
||||
|
||||
heatmap(as.matrix(mat))
|
||||
@ -88,6 +114,7 @@ cor(mat, c3)
|
||||
cor(mat, c4)
|
||||
cor(mat, c5)
|
||||
# https://en.wikipedia.org/wiki/Cophenetic_correlation
|
||||
# https://stats.stackexchange.com/questions/195446/choosing-the-right-linkage-method-for-hierarchical-clustering
|
||||
|
||||
# Dendograms
|
||||
par(mfrow=c(3,2))
|
||||
@ -101,15 +128,15 @@ plot(h5, main = "Single Linkage")
|
||||
hc <- h1
|
||||
# Note that ‘agnes(*, method="ward")’ corresponds to ‘hclust(*, "ward.D2")’
|
||||
|
||||
k <- 7 # number of clusters
|
||||
k <- 4 # number of clusters
|
||||
|
||||
grp <- cutree(hc, k = k)
|
||||
datitem$grp <- grp
|
||||
|
||||
fviz_dend(hc, k = k,
|
||||
cex = 0.5,
|
||||
k_colors = c("#78004B", "#000000", "#3CB4DC", "#91C86E",
|
||||
"#FF6900", "gold", "#434F4F"),
|
||||
k_colors = c("#78004B", "#FF6900", "#3CB4DC", "#91C86E",
|
||||
"#000000", "gold", "#434F4F"),
|
||||
#type = "phylogenic",
|
||||
rect = TRUE
|
||||
)
|
||||
@ -120,15 +147,16 @@ rect.hclust(hc, k=7, border="blue")
|
||||
rect.hclust(hc, k=6, border="green")
|
||||
|
||||
p <- fviz_cluster(list(data = df, cluster = grp),
|
||||
palette = c("#78004B", "#000000", "#3CB4DC", "#91C86E",
|
||||
"#FF6900", "#434F4F", "gold"),
|
||||
palette = c("#78004B", "#FF6900", "#3CB4DC", "#91C86E",
|
||||
"#000000", "#434F4F", "gold"),
|
||||
ellipse.type = "convex",
|
||||
repel = TRUE,
|
||||
show.clust.cent = FALSE, ggtheme = theme_bw())
|
||||
p
|
||||
|
||||
aggregate(cbind(duration, distance, scaleSize , rotationDegree, npaths,
|
||||
ncases, ntopics) ~ grp, datitem, median)
|
||||
ncases, nmoves, nflipCard, nopenTopic, nopenPopup) ~ grp,
|
||||
datitem, median)
|
||||
|
||||
# Something like a scree plot (??)
|
||||
plot(rev(seq_along(hc$height)), hc$height, type = "l")
|
||||
@ -189,15 +217,15 @@ library(png)
|
||||
library(jpeg)
|
||||
library(grid)
|
||||
|
||||
colors <- c("#78004B", "#000000", "#3CB4DC", "#91C86E", "#FF6900",
|
||||
"#434F4F")
|
||||
colors <- c("#78004B", "#FF6900", "#3CB4DC", "#91C86E")
|
||||
|
||||
#pdf("results/haum/figures/clustering_artworks.pdf", height = 8, width = 8, pointsize = 10)
|
||||
png("results/haum/figures/clustering_artworks.png", units = "in", height = 8, width = 8, pointsize = 10, res = 300)
|
||||
pdf("results/figures/clustering_artworks.pdf", height = 8, width = 8, pointsize = 10)
|
||||
#png("results/figures/clustering_artworks.png", units = "in", height = 8, width = 8, pointsize = 10, res = 300)
|
||||
|
||||
par(mai = c(.6,.6,.1,.1), mgp = c(2.4, 1, 0))
|
||||
par(mai = c(.4,.4,.1,.1), mgp = c(2.4, 1, 0))
|
||||
|
||||
plot(y ~ x, p$data, type = "n", ylim = c(-3.2, 3), xlim = c(-4.7, 6.4))
|
||||
plot(y ~ x, p$data, type = "n", ylim = c(-3.5, 2.8), xlim = c(-5, 10),
|
||||
xlab = "", ylab = "")
|
||||
|
||||
for (item in sprintf("%03d", as.numeric(rownames(p$data)))) {
|
||||
|
||||
@ -221,12 +249,13 @@ for (item in sprintf("%03d", as.numeric(rownames(p$data)))) {
|
||||
pch = 15)
|
||||
|
||||
rasterImage(img,
|
||||
xleft = x - .4,
|
||||
xright = x + .4,
|
||||
xleft = x - .45,
|
||||
xright = x + .45,
|
||||
ybottom = y - .2,
|
||||
ytop = y + .2)
|
||||
|
||||
}
|
||||
legend("topright", paste("Cluster", 1:k), col = colors, pch = 15, bty = "n")
|
||||
|
||||
dev.off()
|
||||
|
@ -6,10 +6,11 @@
|
||||
# (2) Clustering
|
||||
# (3) Investigate variants
|
||||
#
|
||||
# input: results/haum/event_logfiles_2024-01-18_09-58-52.csv
|
||||
# input: results/haum/event_logfiles_2024-02-21_16-07-33.csv
|
||||
# output: results/haum/event_logfiles_pre-corona_with-clusters_cases.csv
|
||||
# results/haum/dattree.csv
|
||||
#
|
||||
# last mod: 2024-02-07
|
||||
# last mod: 2024-02-23
|
||||
|
||||
|
||||
# setwd("C:/Users/nwickelmaier/Nextcloud/Documents/MDS/2023ss/60100_master_thesis/analysis/code")
|
||||
@ -21,17 +22,18 @@ library(factoextra)
|
||||
|
||||
#--------------- (1.1) Read log event data ---------------
|
||||
|
||||
dat0 <- read.table("results/haum/event_logfiles_2024-01-18_09-58-52.csv",
|
||||
colClasses = c("character", "character", "POSIXct",
|
||||
"POSIXct", "character", "integer",
|
||||
"numeric", "character", "character",
|
||||
rep("numeric", 3), "character",
|
||||
"character", rep("numeric", 11),
|
||||
"character", "character"),
|
||||
sep = ";", header = TRUE)
|
||||
dat0 <- read.table("results/haum/event_logfiles_2024-02-21_16-07-33.csv",
|
||||
colClasses = c("character", "character", "POSIXct",
|
||||
"POSIXct", "character", "integer",
|
||||
"numeric", "character", "character",
|
||||
rep("numeric", 3), "character",
|
||||
"character", rep("numeric", 11),
|
||||
"character", "character"),
|
||||
sep = ";", header = TRUE)
|
||||
|
||||
dat0$event <- factor(dat0$event, levels = c("move", "flipCard", "openTopic",
|
||||
"openPopup"))
|
||||
dat0$topic <- factor(dat0$topic)
|
||||
|
||||
dat0$weekdays <- factor(weekdays(dat0$date.start),
|
||||
levels = c("Montag", "Dienstag", "Mittwoch",
|
||||
@ -48,18 +50,43 @@ dat <- dat[dat$path != 106098, ]
|
||||
|
||||
#--------------- (1.2) Extract additional infos for clustering ---------------
|
||||
|
||||
datcase <- aggregate(cbind(duration, distance, scaleSize, rotationDegree) ~
|
||||
datcase <- aggregate(cbind(distance, scaleSize, rotationDegree) ~
|
||||
case, dat, function(x) mean(x, na.rm = TRUE), na.action = NULL)
|
||||
|
||||
datcase$length <- aggregate(item ~ case, dat, length)$item
|
||||
|
||||
eventtab <- aggregate(event ~ case, dat, table)["case"]
|
||||
eventtab$nmove <- aggregate(event ~ case, dat, table)$event[, "move"]
|
||||
eventtab$nflipCard <- aggregate(event ~ case, dat, table)$event[, "flipCard"]
|
||||
eventtab$nopenTopic <- aggregate(event ~ case, dat, table)$event[, "openTopic"]
|
||||
eventtab$nopenPopup <- aggregate(event ~ case, dat, table)$event[, "openPopup"]
|
||||
|
||||
topictab <- aggregate(topic ~ case, dat, table)["case"]
|
||||
topictab$artist <- aggregate(topic ~ case, dat, table)$topic[, 1]
|
||||
topictab$details <- aggregate(topic ~ case, dat, table)$topic[, 2]
|
||||
topictab$extra_info <- aggregate(topic ~ case, dat, table)$topic[, 3]
|
||||
topictab$komposition <- aggregate(topic ~ case, dat, table)$topic[, 4]
|
||||
topictab$leben_des_kunstwerks <- aggregate(topic ~ case, dat, table)$topic[, 5]
|
||||
topictab$licht_und_farbe <- aggregate(topic ~ case, dat, table)$topic[, 6]
|
||||
topictab$technik <- aggregate(topic ~ case, dat, table)$topic[, 7]
|
||||
topictab$thema <- aggregate(topic ~ case, dat, table)$topic[, 8]
|
||||
|
||||
datcase <- datcase |>
|
||||
merge(eventtab, by = "case", all = TRUE) |>
|
||||
merge(topictab, by = "case", all = TRUE)
|
||||
|
||||
datcase$ntopiccards <- aggregate(topic ~ case, dat,
|
||||
function(x) ifelse(all(is.na(x)), NA,
|
||||
length(na.omit(x))), na.action =
|
||||
NULL)$topic
|
||||
datcase$ntopics <- aggregate(topic ~ case, dat,
|
||||
function(x) ifelse(all(is.na(x)), NA,
|
||||
length(unique(na.omit(x)))), na.action =
|
||||
NULL)$topic
|
||||
datcase$nitems <- aggregate(item ~ case, dat, function(x)
|
||||
length(unique(x)), na.action = NULL)$item
|
||||
datcase$npaths <- aggregate(path ~ case, dat, function(x)
|
||||
length(unique(x)), na.action = NULL)$path
|
||||
# datcase$ntopics <- aggregate(topic ~ case, dat,
|
||||
# function(x) ifelse(all(is.na(x)), NA,
|
||||
# length(unique(na.omit(x)))), na.action =
|
||||
# NULL)$topic
|
||||
datcase$vacation <- aggregate(vacation ~ case, dat,
|
||||
function(x) ifelse(all(is.na(x)), 0, 1),
|
||||
na.action = NULL)$vacation
|
||||
@ -73,42 +100,370 @@ datcase$morning <- aggregate(date.start ~ case, dat,
|
||||
function(x) ifelse(lubridate::hour(x[1]) > 13, 0, 1),
|
||||
na.action = NULL)$date.start
|
||||
|
||||
datcase <- na.omit(datcase)
|
||||
dat_split <- split(dat, ~ case)
|
||||
|
||||
#--------------- (2) Clustering ---------------
|
||||
time_minmax <- function(subdata) {
|
||||
subdata$min_time <- min(subdata$timeMs.start)
|
||||
if (all(is.na(subdata$timeMs.stop))) {
|
||||
subdata$max_time <- NA
|
||||
} else {
|
||||
subdata$max_time <- max(subdata$timeMs.stop, na.rm = TRUE)
|
||||
}
|
||||
subdata
|
||||
}
|
||||
|
||||
dat_list <- pbapply::pblapply(dat_split, time_minmax)
|
||||
dat_minmax <- dplyr::bind_rows(dat_list)
|
||||
|
||||
datcase$min_time <- aggregate(min_time ~ case, dat_minmax, unique)$min_time
|
||||
datcase$max_time <- aggregate(max_time ~ case, dat_minmax, unique)$max_time
|
||||
|
||||
datcase$duration <- datcase$max_time - datcase$min_time
|
||||
datcase$min_time <- NULL
|
||||
datcase$max_time <- NULL
|
||||
|
||||
cor_mat <- cor(datcase[, -1], use = "pairwise")
|
||||
diag(cor_mat) <- NA
|
||||
heatmap(cor_mat)
|
||||
|
||||
# TODO: Add info if all items of a case are information cards??
|
||||
|
||||
# Navigation types by Bousbia et al. (2010):
|
||||
# - Overviewing: this value is close to the Canter “scanning” value. It
|
||||
# implies that the learner is covering a large proportion of course pages.
|
||||
# Through this phase of fast-reading, the user seeks to acquire an
|
||||
# overall view of the course.
|
||||
# - Flitting: close to “wandering”. It reflects a browsing activity without a
|
||||
# strategy or a particular goal. The main difference with the overviewing
|
||||
# type is the lack of focus on the course.
|
||||
# - Studying: corresponds to a partial or complete reading of the course
|
||||
# pages where the learner spends time on each page.
|
||||
# - Deepening: This describes a learner who spends relatively long time on a
|
||||
# course, checking details, and seeking Web documents related to the course
|
||||
# topics. The main difference with studying is the Web search part that the
|
||||
# learner uses to obtain a deeper understanding of the course.
|
||||
|
||||
# Taxonomy defined by Canter et al. (1985):
|
||||
# - Scanning: seeking an overview of a theme (i.e. subpart of the hypermedia)
|
||||
# by requesting an important proportion of its pages but without spending
|
||||
# much time on them.
|
||||
# - Browsing: going wherever the data leads the navigator until catching an
|
||||
# interest.
|
||||
# - Exploring: reading the viewed pages thoroughly.
|
||||
# - Searching: seeking for a particular document or information.
|
||||
# - Wandering: navigating in an unstructured fashion without any particular
|
||||
# goal or strategy.
|
||||
|
||||
# Features for navigation types for MTT:
|
||||
# - Scanning / Overviewing:
|
||||
# * Proportion of artworks looked at is high: datcase$nitems / 70
|
||||
# * Duration per artwork is low: "ave_duration_item" / datcase$duration
|
||||
# - Exploring:
|
||||
# * Looking at additional information for most items touched (high value):
|
||||
# harmonic mean of datcase$nopenTopic / datcase$nflipCard and
|
||||
# datcase$nopenPopup / datcase$nopenTopic
|
||||
# - Searching / Studying:
|
||||
# * Looking only at a few items
|
||||
# datcase$nitems / 70 is low
|
||||
# * Opening few cards
|
||||
# datcase$nflipCard / mean(datcase$nflipCard) or median(datcase$nflipCard) is low
|
||||
# * but for most cards popups are opened:
|
||||
# datcase$nopenPopup / datcase$nflipCard is high
|
||||
# - Wandering / Flitting:
|
||||
# * Items are mostly just moved:
|
||||
# datcase$nmove / datcase$length is high
|
||||
# * Duration per case is low:
|
||||
# datcase$duration / mean(datcase$duration) or median(datcase$duration)
|
||||
# * Duration per artwork is low: "ave_duration_item" / datcase$duration
|
||||
|
||||
# TODO: Come up with relevant features for navigation behavior
|
||||
|
||||
|
||||
|
||||
dattree <- data.frame(case = datcase$case,
|
||||
Duration = datcase$duration,
|
||||
PropItems = datcase$nitems / length(unique(dat$item)),
|
||||
SearchInfo =
|
||||
2*(((datcase$nopenPopup / datcase$nopenTopic) *
|
||||
(datcase$nopenTopic / datcase$nflipCard)) /
|
||||
((datcase$nopenPopup / datcase$nopenTopic) +
|
||||
(datcase$nopenTopic / datcase$nflipCard))
|
||||
),
|
||||
PropMoves = datcase$nmove / datcase$length,
|
||||
PathLinearity = datcase$nitems / datcase$npaths,
|
||||
Singularity = datcase$npaths / datcase$length
|
||||
)
|
||||
|
||||
dattree$SearchInfo <- ifelse(dattree$SearchInfo %in% 0, 0.1, dattree$SearchInfo)
|
||||
dattree$SearchInfo <- ifelse(is.na(dattree$SearchInfo), 0, dattree$SearchInfo)
|
||||
|
||||
get_centrality <- function(case, data) {
|
||||
|
||||
data$start <- data$date.start
|
||||
data$complete <- data$date.stop
|
||||
|
||||
alog <- activitylog(data[data$case == case, ],
|
||||
case_id = "case",
|
||||
activity_id = "item",
|
||||
resource_id = "path",
|
||||
timestamps = c("start", "complete"))
|
||||
|
||||
net <- process_map(alog, render = FALSE)
|
||||
inet <- DiagrammeR::to_igraph(net)
|
||||
|
||||
c(igraph::centr_degree(inet, loops = FALSE)$centralization,
|
||||
igraph::centr_degree(inet, loops = TRUE)$centralization,
|
||||
igraph::centr_betw(inet)$centralization)
|
||||
}
|
||||
|
||||
|
||||
centrality <- lapply(dattree$case, get_centrality, data = dat)
|
||||
centrality <- do.call(rbind, centrality)
|
||||
|
||||
save(centrality, file = "results/haum/tmp_centrality.RData")
|
||||
|
||||
dattree$centr_degree <- centrality[, 1]
|
||||
dattree$centr_degree_loops <- centrality[, 2]
|
||||
dattree$centr_between <- centrality[, 3]
|
||||
|
||||
par(mfrow = c(3,3))
|
||||
hist(dattree$Duration, breaks = 50, main = "")
|
||||
hist(dattree$SearchInfo, breaks = 50, main = "")
|
||||
hist(dattree$PropItems, breaks = 50, main = "")
|
||||
hist(dattree$PropMoves, breaks = 50, main = "")
|
||||
hist(dattree$PathLinearity, breaks = 50, main = "")
|
||||
hist(dattree$Singularity, breaks = 50, main = "")
|
||||
hist(dattree$centr_degree, breaks = 50, main = "")
|
||||
hist(dattree$centr_degree_loops, breaks = 50, main = "")
|
||||
hist(dattree$centr_between, breaks = 50, main = "")
|
||||
|
||||
|
||||
cor_mat <- cor(dattree[, -1], use = "pairwise")
|
||||
diag(cor_mat) <- NA
|
||||
heatmap(cor_mat)
|
||||
|
||||
|
||||
dattree$Pattern <- "Dispersion"
|
||||
dattree$Pattern <- ifelse(dattree$PathLinearity > 0.8 &
|
||||
dattree$Singularity > 0.8, "Scholar",
|
||||
dattree$Pattern)
|
||||
dattree$Pattern <- ifelse(dattree$PathLinearity <= 0.8 &
|
||||
dattree$centr_between > 0.5, "Star",
|
||||
dattree$Pattern)
|
||||
|
||||
write.table(dattree,
|
||||
file = "results/haum/dattree.csv",
|
||||
sep = ";",
|
||||
quote = FALSE,
|
||||
row.names = FALSE)
|
||||
|
||||
|
||||
tmp <- dat
|
||||
tmp$start <- tmp$date.start
|
||||
tmp$complete <- tmp$date.stop
|
||||
|
||||
|
||||
alog <- activitylog(tmp[tmp$case == 3448, ],
|
||||
case_id = "case",
|
||||
activity_id = "item",
|
||||
resource_id = "path",
|
||||
timestamps = c("start", "complete"))
|
||||
|
||||
process_map(alog)
|
||||
|
||||
net <- process_map(alog, render = FALSE)
|
||||
#DiagrammeR::get_node_df(net)
|
||||
|
||||
DiagrammeR::get_node_info(net)
|
||||
|
||||
DiagrammeR::get_degree_distribution(net)
|
||||
|
||||
DiagrammeR::get_degree_in(net)
|
||||
DiagrammeR::get_degree_out(net)
|
||||
DiagrammeR::get_degree_total(net)
|
||||
|
||||
|
||||
N <- DiagrammeR::count_nodes(net) - 2 # Do not count start and stop nodes
|
||||
|
||||
dc <- DiagrammeR::get_degree_total(net)[1:N, "total_degree"] / (N - 1)
|
||||
|
||||
inet <- DiagrammeR::to_igraph(net)
|
||||
igraph::centr_degree(inet, loops = FALSE)
|
||||
igraph::centr_betw(inet)
|
||||
igraph::centr_clo(inet)
|
||||
|
||||
df <- dattree[, c("Duration", "PropItems", "SearchInfo", "PropMoves")]
|
||||
df$Scholar <- ifelse(dattree$Pattern == "Scholar", 1, 0)
|
||||
df$Star <- ifelse(dattree$Pattern == "Star", 1, 0)
|
||||
df$Dispersion <- ifelse(dattree$Pattern == "Dispersion", 1, 0)
|
||||
# scale Duration and min/max SearchInfo
|
||||
df$Duration <- scale(df$Duration)
|
||||
df$SearchInfo <- (df$SearchInfo - min(df$SearchInfo)) /
|
||||
(max(df$SearchInfo) - min(df$SearchInfo))
|
||||
|
||||
df <- datcase[, c("duration", "distance", "scaleSize", "rotationDegree",
|
||||
"length", "nitems", "npaths")] |>
|
||||
scale()
|
||||
#df <- cbind(df, datcase[, c("vacation", "holiday", "weekend", "morning")])
|
||||
mat <- dist(df)
|
||||
# TODO: Do I need to scale all variables?
|
||||
|
||||
hc <- hclust(mat, method = "ward.D2")
|
||||
h1 <- hclust(mat, method = "average")
|
||||
h2 <- hclust(mat, method = "complete")
|
||||
h3 <- hclust(mat, method = "ward.D")
|
||||
h4 <- hclust(mat, method = "ward.D2")
|
||||
h5 <- hclust(mat, method = "single")
|
||||
|
||||
grp <- cutree(hc, k = 6)
|
||||
datcase$grp <- grp
|
||||
# Cophenetic Distances, for each linkage (runs quite some time!)
|
||||
c1 <- cophenetic(h1)
|
||||
c2 <- cophenetic(h2)
|
||||
c3 <- cophenetic(h3)
|
||||
c4 <- cophenetic(h4)
|
||||
c5 <- cophenetic(h5)
|
||||
|
||||
# Correlations
|
||||
cor(mat, c1)
|
||||
# 0.9029232
|
||||
cor(mat, c2)
|
||||
# 0.8879478
|
||||
cor(mat, c3)
|
||||
# 0.5747296
|
||||
cor(mat, c4)
|
||||
# 0.5994121
|
||||
cor(mat, c5)
|
||||
# 0.5292353
|
||||
|
||||
# https://en.wikipedia.org/wiki/Cophenetic_correlation
|
||||
# https://stats.stackexchange.com/questions/195446/choosing-the-right-linkage-method-for-hierarchical-clustering
|
||||
|
||||
hc <- h1
|
||||
|
||||
# Something like a scree plot (??)
|
||||
plot(rev(hc$height)[1:100], type = "b", pch = 16, cex = .5)
|
||||
|
||||
k <- 4
|
||||
|
||||
grp <- cutree(hc, k = k)
|
||||
df$grp <- grp
|
||||
|
||||
table(grp)
|
||||
|
||||
fviz_cluster(list(data = df, cluster = grp),
|
||||
palette = c("#78004B", "#000000", "#3CB4DC", "#91C86E",
|
||||
"#FF6900", "#434F4F"),
|
||||
#palette = c("#78004B", "#FF6900", "#3CB4DC", "#91C86E",
|
||||
# "#000000", "#434F4F"),
|
||||
ellipse.type = "convex",
|
||||
show.clust.cent = FALSE, ggtheme = theme_bw())
|
||||
|
||||
aggregate(cbind(duration, distance, scaleSize , rotationDegree, length,
|
||||
nitems, npaths) ~ grp, datcase, mean)
|
||||
aggregate(cbind(duration, distance, scaleSize , rotationDegree, length,
|
||||
nitems, npaths) ~ grp, datcase, median)
|
||||
aggregate(cbind(duration, distance, scaleSize , rotationDegree, length,
|
||||
nitems, npaths) ~ grp, datcase, max)
|
||||
table(dattree[dattree$grp == 3, "Pattern"])
|
||||
|
||||
res <- merge(dat, datcase[, c("case", "grp")], by = "case", all.x = TRUE)
|
||||
|
||||
aggregate(cbind(Duration, PropItems, SearchInfo, PropMoves, PathLinearity,
|
||||
Singularity, centr_degree, centr_degree_loops,
|
||||
centr_between) ~ grp, dattree, mean)
|
||||
|
||||
|
||||
aggregate(cbind(Duration, PropItems, SearchInfo, PropMoves, Dispersion,
|
||||
Scholar, Star) ~ grp, df, mean)
|
||||
|
||||
|
||||
# "We first extract the graph sub-sequences corresponding to the four
|
||||
# patterns of Canter et al. (1985). We also identified the number of nodes
|
||||
# to which the learner often goes back to (Fig. 4). These nodes are called
|
||||
# “central nodes”. If the number of central nodes is lower than or equal to
|
||||
# half of the sub-sequences, the browsing pattern indicator takes on the
|
||||
# value “Star”." Bousbia et al. (2010)
|
||||
|
||||
# I do not know how they got the sub-sequences. I am taking the ratio of
|
||||
# strongly connected nodes to weakly connected nodes. If the number of
|
||||
# weakly connected nodes is twice as high, the pattern is classified as a
|
||||
# star, i.e., NodeConnect <= 0.5.
|
||||
# TODO: This does not make sense, smallest and most frequent number is 3!
|
||||
# (and I do not understand it...)
|
||||
|
||||
|
||||
# count_asymmetric_node_pairs Get the number of asymmetrically-connected node pairs
|
||||
# count_edges Get a count of all edges
|
||||
# count_loop_edges Get count of all loop edges
|
||||
# count_mutual_node_pairs Get the number of mutually-connected node pairs
|
||||
# count_unconnected_node_pairs Get the number of unconnected node pairs
|
||||
# count_unconnected_nodes Get count of all unconnected nodes
|
||||
|
||||
|
||||
# TODO: Read up on centrality measures
|
||||
# https://www.r-bloggers.com/2018/12/network-centrality-in-r-an-introduction/
|
||||
# https://www.datacamp.com/tutorial/centrality-network-analysis-R
|
||||
# http://davidrajuh.net/reggie/publications/publications-filer/rd114-2018-Network-Centrality.pdf
|
||||
# https://link.springer.com/article/10.1007/s10618-024-01003-4
|
||||
|
||||
#--------------- (2) Clustering ---------------
|
||||
|
||||
df <- na.omit(datcase[, c("duration", "distance", "scaleSize",
|
||||
"rotationDegree", "length", "nmove",
|
||||
"nitems", "npaths")])
|
||||
|
||||
#df <- cbind(df, datcase[, c("vacation", "holiday", "weekend", "morning")])
|
||||
mat <- dist(scale(df))
|
||||
#mat <- dist(df)
|
||||
|
||||
h1 <- hclust(mat, method = "average")
|
||||
h2 <- hclust(mat, method = "complete")
|
||||
h3 <- hclust(mat, method = "ward.D")
|
||||
h4 <- hclust(mat, method = "ward.D2")
|
||||
h5 <- hclust(mat, method = "single")
|
||||
|
||||
# Cophenetic Distances, for each linkage (runs quite some time!)
|
||||
c1 <- cophenetic(h1)
|
||||
c2 <- cophenetic(h2)
|
||||
c3 <- cophenetic(h3)
|
||||
c4 <- cophenetic(h4)
|
||||
c5 <- cophenetic(h5)
|
||||
|
||||
# Correlations
|
||||
cor(mat, c1)
|
||||
cor(mat, c2)
|
||||
cor(mat, c3)
|
||||
cor(mat, c4)
|
||||
cor(mat, c5)
|
||||
# https://en.wikipedia.org/wiki/Cophenetic_correlation
|
||||
# https://stats.stackexchange.com/questions/195446/choosing-the-right-linkage-method-for-hierarchical-clustering
|
||||
|
||||
hc <- h1
|
||||
|
||||
# Something like a scree plot (??)
|
||||
plot(rev(hc$height)[1:100], type = "b", pch = 16, cex = .5)
|
||||
|
||||
|
||||
# TODO: Something is wrong
|
||||
|
||||
k <- 4
|
||||
|
||||
grp <- cutree(hc, k = k)
|
||||
df$grp <- grp
|
||||
|
||||
table(grp)
|
||||
|
||||
fviz_cluster(list(data = df, cluster = grp),
|
||||
#palette = c("#78004B", "#FF6900", "#3CB4DC", "#91C86E",
|
||||
# "#000000", "#434F4F"),
|
||||
ellipse.type = "convex",
|
||||
show.clust.cent = FALSE, ggtheme = theme_bw())
|
||||
|
||||
aggregate(cbind(duration, distance, scaleSize , rotationDegree, length, nmove,
|
||||
nitems, npaths) ~ grp, df, mean)
|
||||
aggregate(cbind(duration, distance, scaleSize , rotationDegree, length, nmove,
|
||||
nitems, npaths) ~ grp, df, median)
|
||||
aggregate(cbind(duration, distance, scaleSize , rotationDegree, length, nmove,
|
||||
nitems, npaths) ~ grp, df, max)
|
||||
|
||||
|
||||
df$case <- na.omit(datcase[, c("case", "duration", "distance", "scaleSize",
|
||||
"rotationDegree", "length", "nmove",
|
||||
"nitems", "npaths")])$case
|
||||
|
||||
res <- merge(dat, df[, c("case", "grp")], by = "case", all.x = TRUE)
|
||||
res <- res[order(res$fileId.start, res$date.start, res$timeMs.start), ]
|
||||
|
||||
xtabs( ~ item + grp, res)
|
||||
aggregate(event ~ grp, res, table)
|
||||
|
||||
# Look at clusters
|
||||
par(mfrow = c(2, 2))
|
||||
vioplot::vioplot(duration ~ grp, res)
|
||||
vioplot::vioplot(distance ~ grp, res)
|
||||
vioplot::vioplot(scaleSize ~ grp, res)
|
||||
|
Loading…
Reference in New Issue
Block a user