Worked on case clustering; becomes user navigation again ;)
This commit is contained in:
		
							parent
							
								
									98e62da5b8
								
							
						
					
					
						commit
						358d962f1e
					
				@ -1,113 +0,0 @@
 | 
			
		||||
# 09_case-clustering.R
 | 
			
		||||
#
 | 
			
		||||
# content: (1) Read data
 | 
			
		||||
#           (1.1) Read log event data
 | 
			
		||||
#           (1.2) Extract additional infos for clustering
 | 
			
		||||
#          (2) Clustering
 | 
			
		||||
#
 | 
			
		||||
# input:  results/haum/event_logfiles_2024-01-18_09-58-52.csv
 | 
			
		||||
# output: results/haum/event_logfiles_pre-corona_with-clusters_cases.csv
 | 
			
		||||
#
 | 
			
		||||
# last mod: 2024-02-04
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
# setwd("C:/Users/nwickelmaier/Nextcloud/Documents/MDS/2023ss/60100_master_thesis/analysis/code")
 | 
			
		||||
 | 
			
		||||
library(bupaverse)
 | 
			
		||||
library(factoextra)
 | 
			
		||||
 | 
			
		||||
#--------------- (1) Read data ---------------
 | 
			
		||||
 | 
			
		||||
#--------------- (1.1) Read log event data ---------------
 | 
			
		||||
 | 
			
		||||
dat0 <- read.table("results/haum/event_logfiles_2024-01-18_09-58-52.csv",
 | 
			
		||||
                  colClasses = c("character", "character", "POSIXct",
 | 
			
		||||
                                 "POSIXct", "character", "integer",
 | 
			
		||||
                                 "numeric", "character", "character",
 | 
			
		||||
                                 rep("numeric", 3), "character",
 | 
			
		||||
                                 "character", rep("numeric", 11),
 | 
			
		||||
                                 "character", "character"),
 | 
			
		||||
                  sep = ";", header = TRUE)
 | 
			
		||||
dat0$event <- factor(dat0$event, levels = c("move", "flipCard", "openTopic",
 | 
			
		||||
                                          "openPopup"))
 | 
			
		||||
 | 
			
		||||
# Select data pre Corona
 | 
			
		||||
dat <- dat0[as.Date(dat0$date.start) < "2020-03-13", ]
 | 
			
		||||
dat <- dat[dat$path != 106098, ]
 | 
			
		||||
 | 
			
		||||
#--------------- (1.2) Extract additional infos for clustering ---------------
 | 
			
		||||
 | 
			
		||||
datcase <- aggregate(cbind(duration, distance, scaleSize, rotationDegree) ~
 | 
			
		||||
                     case, dat, function(x) mean(x, na.rm = TRUE), na.action = NULL)
 | 
			
		||||
 | 
			
		||||
datcase$length <- aggregate(item ~ case, dat, length)$item
 | 
			
		||||
datcase$nitems <- aggregate(item ~ case, dat, function(x)
 | 
			
		||||
                            length(unique(x)), na.action = NULL)$item
 | 
			
		||||
datcase$npaths <- aggregate(path ~ case, dat, function(x)
 | 
			
		||||
                            length(unique(x)), na.action = NULL)$path
 | 
			
		||||
 | 
			
		||||
# datcase$ntopics <- aggregate(topic ~ case, dat,
 | 
			
		||||
#                              function(x) ifelse(all(is.na(x)), NA, length(unique(na.omit(x)))),
 | 
			
		||||
#                              na.action = NULL)$topic
 | 
			
		||||
# 
 | 
			
		||||
# datcase$vacation <- aggregate(vacation ~ case, dat,
 | 
			
		||||
#                               function(x) ifelse(all(is.na(x)), 0, 1),
 | 
			
		||||
#                               na.action = NULL)$vacation
 | 
			
		||||
# datcase$holiday <- aggregate(holiday ~ case, dat,
 | 
			
		||||
#                              function(x) ifelse(all(is.na(x)), 0, 1),
 | 
			
		||||
#                              na.action = NULL)$holiday
 | 
			
		||||
# datcase$weekend <- aggregate(weekdays ~ case, dat,
 | 
			
		||||
#                              function(x) ifelse(any(x %in% c("Saturday", "Sunday")), 1, 0),
 | 
			
		||||
#                              na.action = NULL)$weekdays
 | 
			
		||||
# datcase$morning <- aggregate(date.start ~ case, dat,
 | 
			
		||||
#                              function(x) ifelse(lubridate::hour(x[1]) > 13, 0, 1),
 | 
			
		||||
#                              na.action = NULL)$date.start
 | 
			
		||||
 | 
			
		||||
datcase <- na.omit(datcase)
 | 
			
		||||
 | 
			
		||||
#--------------- (2) Clustering ---------------
 | 
			
		||||
 | 
			
		||||
df <- datcase[, c("duration", "distance", "scaleSize", "rotationDegree",
 | 
			
		||||
                  "length", "nitems", "npaths")] |>
 | 
			
		||||
       scale()
 | 
			
		||||
mat <- dist(df)
 | 
			
		||||
 | 
			
		||||
hc <- hclust(mat, method = "ward.D2")
 | 
			
		||||
 | 
			
		||||
grp <- cutree(hc, k = 6)
 | 
			
		||||
datcase$grp <- grp
 | 
			
		||||
 | 
			
		||||
table(grp)
 | 
			
		||||
 | 
			
		||||
# k1 <- kmeans(mat, 4)
 | 
			
		||||
# datcase$kcluster <- k1$cluster
 | 
			
		||||
 | 
			
		||||
set.seed(1658)
 | 
			
		||||
ids <- sample(rownames(df), 5000)
 | 
			
		||||
 | 
			
		||||
fviz_cluster(list(data = df[ids, ], cluster = grp[ids]),
 | 
			
		||||
             palette = c("#78004B", "#000000", "#3CB4DC", "#91C86E",
 | 
			
		||||
                         "#FF6900", "#434F4F"),
 | 
			
		||||
             ellipse.type = "convex",
 | 
			
		||||
             show.clust.cent = FALSE, ggtheme = theme_bw())
 | 
			
		||||
 | 
			
		||||
aggregate(cbind(duration, distance, scaleSize , rotationDegree, length,
 | 
			
		||||
                nitems, npaths) ~ grp, datcase, mean)
 | 
			
		||||
aggregate(cbind(duration, distance, scaleSize , rotationDegree, length,
 | 
			
		||||
                nitems, npaths) ~ grp, datcase, max)
 | 
			
		||||
 | 
			
		||||
res <- merge(dat, datcase[, c("case", "grp")], by = "case", all.x = TRUE)
 | 
			
		||||
res <- res[order(res$fileId.start, res$date.start, res$timeMs.start), ]
 | 
			
		||||
 | 
			
		||||
# Look at clusters
 | 
			
		||||
vioplot::vioplot(duration ~ grp, res)
 | 
			
		||||
vioplot::vioplot(distance ~ grp, res)
 | 
			
		||||
vioplot::vioplot(scaleSize ~ grp, res)
 | 
			
		||||
vioplot::vioplot(rotationDegree ~ grp, res)
 | 
			
		||||
 | 
			
		||||
write.table(res,
 | 
			
		||||
            file = "results/haum/event_logfiles_pre-corona_with-clusters_cases.csv",
 | 
			
		||||
            sep = ";",
 | 
			
		||||
            quote = FALSE,
 | 
			
		||||
            row.names = FALSE)
 | 
			
		||||
 | 
			
		||||
							
								
								
									
										221
									
								
								code/09_user-navigation.R
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										221
									
								
								code/09_user-navigation.R
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,221 @@
 | 
			
		||||
# 09_case-clustering.R
 | 
			
		||||
#
 | 
			
		||||
# content: (1) Read data
 | 
			
		||||
#           (1.1) Read log event data
 | 
			
		||||
#           (1.2) Extract additional infos for clustering
 | 
			
		||||
#          (2) Clustering
 | 
			
		||||
#
 | 
			
		||||
# input:  results/haum/event_logfiles_2024-01-18_09-58-52.csv
 | 
			
		||||
# output: results/haum/event_logfiles_pre-corona_with-clusters_cases.csv
 | 
			
		||||
#
 | 
			
		||||
# last mod: 2024-02-04
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
# setwd("C:/Users/nwickelmaier/Nextcloud/Documents/MDS/2023ss/60100_master_thesis/analysis/code")
 | 
			
		||||
 | 
			
		||||
library(bupaverse)
 | 
			
		||||
library(factoextra)
 | 
			
		||||
 | 
			
		||||
#--------------- (1) Read data ---------------
 | 
			
		||||
 | 
			
		||||
#--------------- (1.1) Read log event data ---------------
 | 
			
		||||
 | 
			
		||||
dat0 <- read.table("results/haum/event_logfiles_2024-01-18_09-58-52.csv",
 | 
			
		||||
                  colClasses = c("character", "character", "POSIXct",
 | 
			
		||||
                                 "POSIXct", "character", "integer",
 | 
			
		||||
                                 "numeric", "character", "character",
 | 
			
		||||
                                 rep("numeric", 3), "character",
 | 
			
		||||
                                 "character", rep("numeric", 11),
 | 
			
		||||
                                 "character", "character"),
 | 
			
		||||
                  sep = ";", header = TRUE)
 | 
			
		||||
dat0$event <- factor(dat0$event, levels = c("move", "flipCard", "openTopic",
 | 
			
		||||
                                          "openPopup"))
 | 
			
		||||
 | 
			
		||||
dat0$weekdays <- factor(weekdays(dat0$date.start),
 | 
			
		||||
                        levels = c("Montag", "Dienstag", "Mittwoch",
 | 
			
		||||
                                   "Donnerstag", "Freitag", "Samstag",
 | 
			
		||||
                                   "Sonntag"),
 | 
			
		||||
                        labels = c("Monday", "Tuesday", "Wednesday",
 | 
			
		||||
                                   "Thursday", "Friday", "Saturday",
 | 
			
		||||
                                   "Sunday"))
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
# Select data pre Corona
 | 
			
		||||
dat <- dat0[as.Date(dat0$date.start) < "2020-03-13", ]
 | 
			
		||||
dat <- dat[dat$path != 106098, ]
 | 
			
		||||
 | 
			
		||||
#--------------- (1.2) Extract additional infos for clustering ---------------
 | 
			
		||||
 | 
			
		||||
datcase <- aggregate(cbind(duration, distance, scaleSize, rotationDegree) ~
 | 
			
		||||
                     case, dat, function(x) mean(x, na.rm = TRUE), na.action = NULL)
 | 
			
		||||
 | 
			
		||||
datcase$length <- aggregate(item ~ case, dat, length)$item
 | 
			
		||||
datcase$nitems <- aggregate(item ~ case, dat, function(x)
 | 
			
		||||
                            length(unique(x)), na.action = NULL)$item
 | 
			
		||||
datcase$npaths <- aggregate(path ~ case, dat, function(x)
 | 
			
		||||
                            length(unique(x)), na.action = NULL)$path
 | 
			
		||||
 | 
			
		||||
# datcase$ntopics <- aggregate(topic ~ case, dat,
 | 
			
		||||
#                              function(x) ifelse(all(is.na(x)), NA, length(unique(na.omit(x)))),
 | 
			
		||||
#                              na.action = NULL)$topic
 | 
			
		||||
# 
 | 
			
		||||
datcase$vacation <- aggregate(vacation ~ case, dat,
 | 
			
		||||
                              function(x) ifelse(all(is.na(x)), 0, 1),
 | 
			
		||||
                              na.action = NULL)$vacation
 | 
			
		||||
datcase$holiday <- aggregate(holiday ~ case, dat,
 | 
			
		||||
                             function(x) ifelse(all(is.na(x)), 0, 1),
 | 
			
		||||
                             na.action = NULL)$holiday
 | 
			
		||||
datcase$weekend <- aggregate(weekdays ~ case, dat,
 | 
			
		||||
                             function(x) ifelse(any(x %in% c("Saturday", "Sunday")), 1, 0),
 | 
			
		||||
                             na.action = NULL)$weekdays
 | 
			
		||||
datcase$morning <- aggregate(date.start ~ case, dat,
 | 
			
		||||
                             function(x) ifelse(lubridate::hour(x[1]) > 13, 0, 1),
 | 
			
		||||
                             na.action = NULL)$date.start
 | 
			
		||||
 | 
			
		||||
datcase <- na.omit(datcase)
 | 
			
		||||
 | 
			
		||||
#--------------- (2) Clustering ---------------
 | 
			
		||||
 | 
			
		||||
df <- datcase[, c("duration", "distance", "scaleSize", "rotationDegree",
 | 
			
		||||
                  "length", "nitems", "npaths")] |>
 | 
			
		||||
       scale()
 | 
			
		||||
df <- cbind(df, datcase[, c("vacation", "holiday", "weekend", "morning")])       
 | 
			
		||||
mat <- dist(df)
 | 
			
		||||
 | 
			
		||||
hc <- hclust(mat, method = "ward.D2")
 | 
			
		||||
hc <- hclust(mat)
 | 
			
		||||
 | 
			
		||||
grp <- cutree(hc, k = 3)
 | 
			
		||||
datcase$grp <- grp
 | 
			
		||||
 | 
			
		||||
table(grp)
 | 
			
		||||
 | 
			
		||||
# k1 <- kmeans(mat, 4)
 | 
			
		||||
# datcase$kcluster <- k1$cluster
 | 
			
		||||
 | 
			
		||||
fviz_cluster(list(data = df, cluster = grp),
 | 
			
		||||
             palette = c("#78004B", "#000000", "#3CB4DC", "#91C86E",
 | 
			
		||||
                         "#FF6900", "#434F4F"),
 | 
			
		||||
             ellipse.type = "convex",
 | 
			
		||||
             show.clust.cent = FALSE, ggtheme = theme_bw())
 | 
			
		||||
 | 
			
		||||
aggregate(cbind(duration, distance, scaleSize , rotationDegree, length,
 | 
			
		||||
                nitems, npaths) ~ grp, datcase, mean)
 | 
			
		||||
aggregate(cbind(duration, distance, scaleSize , rotationDegree, length,
 | 
			
		||||
                nitems, npaths) ~ grp, datcase, median)
 | 
			
		||||
aggregate(cbind(duration, distance, scaleSize , rotationDegree, length,
 | 
			
		||||
                nitems, npaths) ~ grp, datcase, max)
 | 
			
		||||
 | 
			
		||||
res <- merge(dat, datcase[, c("case", "grp")], by = "case", all.x = TRUE)
 | 
			
		||||
res <- res[order(res$fileId.start, res$date.start, res$timeMs.start), ]
 | 
			
		||||
 | 
			
		||||
xtabs( ~ item + grp, res)
 | 
			
		||||
 | 
			
		||||
# Look at clusters
 | 
			
		||||
vioplot::vioplot(duration ~ grp, res)
 | 
			
		||||
vioplot::vioplot(distance ~ grp, res)
 | 
			
		||||
vioplot::vioplot(scaleSize ~ grp, res)
 | 
			
		||||
vioplot::vioplot(rotationDegree ~ grp, res)
 | 
			
		||||
 | 
			
		||||
write.table(res,
 | 
			
		||||
            file = "results/haum/event_logfiles_pre-corona_with-clusters_cases.csv",
 | 
			
		||||
            sep = ";",
 | 
			
		||||
            quote = FALSE,
 | 
			
		||||
            row.names = FALSE)
 | 
			
		||||
 | 
			
		||||
# Look at variants
 | 
			
		||||
res$start <- res$date.start
 | 
			
		||||
res$complete <- res$date.stop
 | 
			
		||||
 | 
			
		||||
alog <- activitylog(res,
 | 
			
		||||
                    case_id     = "case",
 | 
			
		||||
                    activity_id = "item",
 | 
			
		||||
                    resource_id = "path",
 | 
			
		||||
                    timestamps  = c("start", "complete"))
 | 
			
		||||
 | 
			
		||||
trace_explorer(alog, n_traces = 30)
 | 
			
		||||
# --> sequences of artworks are just too rare
 | 
			
		||||
 | 
			
		||||
tr <- traces(alog)
 | 
			
		||||
trace_length <- sapply(strsplit(tr$trace, ","), length)
 | 
			
		||||
tr[trace_length > 10, ]
 | 
			
		||||
 | 
			
		||||
trace_varied <- sapply(strsplit(tr$trace, ","), function(x) length(unique(x)))
 | 
			
		||||
tr[trace_varied > 1, ]
 | 
			
		||||
table(tr[trace_varied > 2, "absolute_frequency"])
 | 
			
		||||
table(tr[trace_varied > 3, "absolute_frequency"])
 | 
			
		||||
 | 
			
		||||
longest_case <- datcase[datcase$length == max(datcase$length), "case"]
 | 
			
		||||
 | 
			
		||||
alog_often <- activitylog(res[res$case == longest_case, ],
 | 
			
		||||
                          case_id     = "case",
 | 
			
		||||
                          activity_id = "item",
 | 
			
		||||
                          resource_id = "path",
 | 
			
		||||
                          timestamps  = c("start", "complete"))
 | 
			
		||||
 | 
			
		||||
process_map(alog_often)
 | 
			
		||||
 | 
			
		||||
# Power law for frequencies of traces
 | 
			
		||||
tab <- table(tr$absolute_frequency)
 | 
			
		||||
x <- as.numeric(tab)
 | 
			
		||||
y <- as.numeric(names(tab))
 | 
			
		||||
plot(log(y) ~ log(x))
 | 
			
		||||
abline(lm(log(y) ~ log(x)))
 | 
			
		||||
 | 
			
		||||
# Look at individual traces as examples
 | 
			
		||||
tr[trace_varied == 5 & trace_length > 50, ]
 | 
			
		||||
# --> every variant exists only once, of course
 | 
			
		||||
datcase[datcase$nitems == 5 & datcase$length > 50,]
 | 
			
		||||
 | 
			
		||||
sapply(datcase[, -c(1, 9)], median)
 | 
			
		||||
 | 
			
		||||
ex <- datcase[datcase$nitems == 10 & datcase$length == 30,]
 | 
			
		||||
# --> pretty randomly chosen... TODO:
 | 
			
		||||
 | 
			
		||||
for (case in ex$case) {
 | 
			
		||||
 | 
			
		||||
  alog <- activitylog(res[res$case == case, ],
 | 
			
		||||
                      case_id     = "case",
 | 
			
		||||
                      activity_id = "item",
 | 
			
		||||
                      resource_id = "path",
 | 
			
		||||
                      timestamps  = c("start", "complete"))
 | 
			
		||||
  
 | 
			
		||||
  dfg <- process_map(alog,
 | 
			
		||||
                     type_nodes = frequency("absolute", color_scale = "Greys"),
 | 
			
		||||
                     type_edges = frequency("absolute", color_edges = "#FF6900"),
 | 
			
		||||
                     rankdir    = "LR",
 | 
			
		||||
                     render     = FALSE)
 | 
			
		||||
  export_map(dfg,
 | 
			
		||||
             file_name = paste0("results/processmaps/dfg_example_cases_", case, "_R.pdf"),
 | 
			
		||||
             file_type = "pdf",
 | 
			
		||||
             title     = paste("Case", case))
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
## --> not interesting!
 | 
			
		||||
# Just "flipCard"
 | 
			
		||||
res_case <- res[!duplicated(res[, c("case", "path")]), ]
 | 
			
		||||
 | 
			
		||||
for (case in ex$case) {
 | 
			
		||||
 | 
			
		||||
  alog <- activitylog(res_case[res_case$case == case, ],
 | 
			
		||||
                      case_id     = "case",
 | 
			
		||||
                      activity_id = "item",
 | 
			
		||||
                      resource_id = "path",
 | 
			
		||||
                      timestamps  = c("start", "complete"))
 | 
			
		||||
  
 | 
			
		||||
  dfg <- process_map(alog,
 | 
			
		||||
                     type_nodes = frequency("absolute", color_scale = "Greys"),
 | 
			
		||||
                     type_edges = frequency("absolute", color_edges = "#FF6900"),
 | 
			
		||||
                     rankdir    = "LR",
 | 
			
		||||
                     render     = FALSE)
 | 
			
		||||
  export_map(dfg,
 | 
			
		||||
             file_name = paste0("results/processmaps/dfg_example_cases_", case, "_fc_R.pdf"),
 | 
			
		||||
             file_type = "pdf",
 | 
			
		||||
             title     = paste("Single case", case))
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
		Loading…
	
	
			
			x
			
			
		
	
		Reference in New Issue
	
	Block a user