library(lme4) library(lattice) dat <- read.table("data/hsbdataset.txt", header = TRUE) dat$gmmath <- mean(dat$mathach) dat$meanmath <- with(dat, ave(mathach, school)) plot(dat$ses - dat$meanses, dat$cses) xyplot(mathach ~ cses, dat) xyplot(mathach + meanmath + gmmath ~ cses | factor(school), dat, type = c("p", "r", "r"), distribute.type = TRUE, col = c("#91C86E", "#91C86E", "#78004B")) xyplot(gmmath + meanmath ~ cses | factor(school), dat, type = "r") m1 <- lmer(mathach ~ 1 + (1 | school), dat) xyplot(mathach + predict(m1) + predict(m1, re.form = NA) ~ cses | factor(school), dat, type = c("p", "r", "r"), distribute.type = TRUE, col = c("#91C86E", "#91C86E", "#78004B")) # ICC VarCorr(m1)[[1]] / (VarCorr(m1)[[1]] + sigma(m1)^2) sjPlot::tab_model(m1) m2 <- lmer(mathach ~ cses + (1 | school), dat) xyplot(mathach + predict(m2) + predict(m2, re.form = NA) ~ cses | factor(school), dat, type = c("p", "r", "r"), distribute.type = TRUE, col = c("#91C86E", "#91C86E", "#78004B")) # ICC VarCorr(m2)[[1]] / (VarCorr(m2)[[1]] + sigma(m2)^2) sjPlot::tab_model(m1, m2) m3 <- lmer(mathach ~ cses + (cses | school), dat) xyplot(mathach + predict(m3) + predict(m3, re.form = NA) ~ cses | factor(school), dat, type = c("p", "r", "r"), distribute.type = TRUE, col = c("#91C86E", "#91C86E", "#78004B")) sjPlot::tab_model(m1, m2, m3) m4 <- lmer(mathach ~ cses + sector + (cses | school), data = dat) sjPlot::tab_model(m1, m2, m3, m4) m5 <- lmer(mathach ~ cses * sector + (cses | school), data = dat) sjPlot::tab_model(m1, m2, m3, m4, m5) xyplot(mathach ~ cses, data = dat, groups = sector, type = c("p", "r")) lmm.1 <- lmer(mathach ~ meanses*cses + sector*cses + (1 | school), data = dat, REML = FALSE) lmm.2 <- lmer(mathach ~ meanses*cses + sector*cses + (1 + cses | school), data = dat, REML = FALSE) c <- seq(-2, 2, length = 51) m <- seq(-1, 1, length = 26) ndat <- expand.grid(c, m) colnames(ndat) <- c("cses", "meanses") ndat$sector <- factor(0, levels = c("0", "1")) z <- matrix(predict(lmm.2, newdata=ndat, re.form=NA), 51) persp(c, m, z, theta = 40, phi = 20, col = "lightblue", ltheta = 60, shade = .9, xlab = "cses", ylab = "meanses", zlab = "mathach", main = "Model 2") lmm.3 <- lmer(mathach ~ meanses + sector*cses + (1 + cses | school), data = dat, REML = FALSE) z <- matrix(predict(lmm.3, newdata = ndat, re.form = NA), nrow = 51) persp(c, m, z, theta = 40, phi = 20, col = "lightblue", ltheta = 60, shade = .9, xlab = "cses", ylab = "meanses", zlab = "mathach", main = "Model 3") # TODO: Add profiling to show instability of parameter estimation?