Add exercise and clean up code for example

This commit is contained in:
Nora Wickelmaier 2025-06-20 13:59:41 +02:00
parent 72bd3fcaa7
commit 40fdb67b67
6 changed files with 186 additions and 40 deletions

View File

@ -1,33 +1,49 @@
# hsb.R
#
# content: (1) Read and plot data
# (2) Fit models with random school effects
# (3) Hierarchical modeling
#
# input: data/hsbdataset.txt
# output: --
#
# last mod: 2025-06-20, NW
library(lme4)
library(lattice)
#----- (1) Read and plot data -------------------------------------------------
dat <- read.table("data/hsbdataset.txt", header = TRUE)
dat$gmmath <- mean(dat$mathach)
dat$meanmath <- with(dat, ave(mathach, school))
plot(dat$ses - dat$meanses, dat$cses)
xyplot(mathach ~ cses, dat)
xyplot(mathach + meanmath + gmmath ~ cses | factor(school), dat,
type = c("p", "r", "r"), distribute.type = TRUE,
xyplot(mathach + meanmath + gmmath ~ cses | factor(school), data = dat,
type = c("p", "r", "r"),
distribute.type = TRUE,
col = c("#91C86E", "#91C86E", "#78004B"))
xyplot(gmmath + meanmath ~ cses | factor(school), dat, type = "r")
# Shorter version
xyplot(gmmath + meanmath ~ cses | factor(school), data = dat, type = "r")
#----- (2) Fit models with random school effects ------------------------------
## Null model with school-specific random intercepts
m1 <- lmer(mathach ~ 1 + (1 | school), dat)
# Plot predictions
xyplot(mathach + predict(m1) + predict(m1, re.form = NA) ~ cses | factor(school),
dat, type = c("p", "r", "r"), distribute.type = TRUE,
data = dat,
type = c("p", "r", "r"),
distribute.type = TRUE,
col = c("#91C86E", "#91C86E", "#78004B"))
# ICC
VarCorr(m1)[[1]] / (VarCorr(m1)[[1]] + sigma(m1)^2)
sjPlot::tab_model(m1)
## Model with socioeconomic status and school-specific random intercepts
xyplot(mathach ~ cses, dat)
mean(dat$cses)
m2 <- lmer(mathach ~ cses + (1 | school), dat)
@ -38,36 +54,41 @@ xyplot(mathach + predict(m2) + predict(m2, re.form = NA) ~ cses | factor(school)
# ICC
VarCorr(m2)[[1]] / (VarCorr(m2)[[1]] + sigma(m2)^2)
sjPlot::tab_model(m1, m2)
## Model with socioeconomic status and school-specific random slopes
m3 <- lmer(mathach ~ cses + (cses | school), dat)
xyplot(mathach + predict(m3) + predict(m3, re.form = NA) ~ cses | factor(school),
dat, type = c("p", "r", "r"), distribute.type = TRUE,
col = c("#91C86E", "#91C86E", "#78004B"))
sjPlot::tab_model(m1, m2, m3)
## Model with socioeconomic status, sector, and school-specific random slopes
m4 <- lmer(mathach ~ cses + sector + (cses | school), data = dat)
sjPlot::tab_model(m1, m2, m3, m4)
## Model with socioeconomic status, sector, interaction, and school-specific
## random slopes
m5 <- lmer(mathach ~ cses * sector + (cses | school), data = dat)
sjPlot::tab_model(m1, m2, m3, m4, m5)
xyplot(mathach ~ cses, data = dat, groups = sector, type = c("p", "r"))
#----- (3) Hierarchical modeling ----------------------------------------------
h1 <- lmer(mathach ~ meanses*cses + sector*cses + (1 + cses | school),
data = dat, REML = FALSE)
h2 <- lmer(mathach ~ meanses*cses + sector*cses + (1 | school),
data = dat, REML = FALSE)
# Likelihood-ratio test
anova(h2, h1)
pm1 <- profile(h1)
confint(pm1)
xyplot(pm1)
#densityplot(pm1)
splom(pm1, which = "theta_")
lmm.1 <- lmer(mathach ~ meanses*cses + sector*cses + (1 | school), data = dat,
REML = FALSE)
lmm.2 <- lmer(mathach ~ meanses*cses + sector*cses + (1 + cses | school),
data = dat, REML = FALSE)
## Visualization of two way interaction of `cses` and `meanses`
c <- seq(-2, 2, length = 51)
m <- seq(-1, 1, length = 26)
ndat <- expand.grid(c, m)
@ -76,19 +97,16 @@ colnames(ndat) <- c("cses", "meanses")
ndat$sector <- factor(0, levels = c("0", "1"))
z <- matrix(predict(lmm.2, newdata=ndat, re.form=NA), 51)
z <- matrix(predict(lmm.2, newdata = ndat, re.form = NA), 51)
persp(c, m, z, theta = 40, phi = 20, col = "lightblue", ltheta = 60, shade = .9,
xlab = "cses", ylab = "meanses", zlab = "mathach", main = "Model 2")
lmm.3 <- lmer(mathach ~ meanses + sector*cses + (1 + cses | school),
data = dat, REML = FALSE)
h3 <- lmer(mathach ~ meanses + sector*cses + (1 + cses | school),
data = dat, REML = FALSE)
z <- matrix(predict(lmm.3, newdata = ndat, re.form = NA), nrow = 51)
persp(c, m, z, theta = 40, phi = 20, col = "lightblue", ltheta = 60, shade = .9,
xlab = "cses", ylab = "meanses", zlab = "mathach", main = "Model 3")
# TODO: Add profiling to show instability of parameter estimation?

126
exercises/jsp.md Normal file
View File

@ -0,0 +1,126 @@
Exercise: Junior School Project
================
Nora Wickelmaier
2025-06-20
Load the Junior School Project collected from primary (U.S. term is
elementary) schools in inner London in R. You might need to install the
faraway package first with `install.packages("faraway")`.
The data frame contains the following variables:
| | |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| `school` | 50 schools code 150 |
| `class` | a factor with levels `1`, `2`, `3`, and `4` |
| `gender` | a factor with levels `boy` and `girl` |
| `social` | class of the father I = 1; II = 2; III nonmanual = 3; III manual = 4; IV = 5; V = 6; Long-term unemployed = 7; Not currently employed = 8; Father absent = 9 |
| `raven` | test score |
| `id` | student id coded 11402 |
| `english` | score on English |
| `math` | score on Maths |
| `year` | year of school |
We want to investigate how math achievement is influenced by raven score
and social class of the father. If you need a refresher on Ravens
Progressive Matrices, check here:
<https://en.wikipedia.org/wiki/Raven%27s_Progressive_Matrices>.
Basically, it is an intelligent test.
We will take a subset of the data, so that each student provides only
one data point, for simplicity:
``` r
data("jsp", package = "faraway")
dat <- jsp |> subset(year == 0)
```
<img src="jsp_files/figure-gfm/unnamed-chunk-2-1.png" style="display: block; margin: auto;" />
1. Create a new variable `craven` where `raven` is centered over all
students
2. Create another variable `gcraven` where `craven` is centered over
all schools. Create a variable `mraven` containing the centered
average school means first, so that you can calculate
``` r
dat$gcraven <- dat$craven - dat$mraven
# Check your results
aggregate(craven ~ school, dat, mean) |> head()
```
## school craven
## 1 1 -2.6886533
## 2 2 0.1250722
## 3 3 2.0584055
## 4 4 0.9167389
## 5 5 2.3512627
## 6 6 0.4584055
``` r
aggregate(gcraven ~ school, dat, mean) |> head()
```
## school gcraven
## 1 1 1.253746e-15
## 2 2 -1.184075e-15
## 3 3 -1.421172e-15
## 4 4 1.184283e-15
## 5 5 5.075722e-16
## 6 6 0.000000e+00
3. Create a plot with `lattice::xyplot()` with `gcraven` on the
$x$-axis and `math` on the $y$-axis and one panel for each school.
Use `type = c("p", "g", "r")`. You can also use `ggplot2` if you
want to. What would be your conclusion about the need for
school-specific slopes based on this plot?
<img src="jsp_files/figure-gfm/unnamed-chunk-7-1.png" style="display: block; margin: auto;" />
4. We will consider the following levels of the data:
- Level 1: students
- Level 2: schools
And the variables associated with the levels:
| Level | Variable | Description |
|-------|-----------|----------------------------------------------|
| 2 | `school` | 50 schools code 150 |
| 2 | `mraven` | mean raven score of school (overall mean 0) |
| 1 | `social` | class of the father (categorical) |
| 1 | `gcraven` | centered test score (mean for each school 0) |
| 1 | `math` | score on Maths |
Fit the following model containing school-specific intercepts and
slopes with `lme4::lmer()`
$$
\begin{align*}
\text{(Level 1)} \quad y_{ij} &= b_{0i} + b_{1i}\,gcraven_{ij} + b_{2i}\,social_{ij} + b_{3i}\,(gcraven_{ij}\times social_{ij}) + \varepsilon_{ij}\\
\text{(Level 2)} \quad b_{0i} &= \beta_0 + \beta_4\,mraven_i + \upsilon_{0i} \\
\quad b_{1i} &= \beta_1 + \beta_5\,mraven_i + \upsilon_{1i}\\
\quad b_{2i} &= \beta_2\\
\quad b_{3i} &= \beta_3\\
\text{(2) in (1)} \quad y_{ij} &= \beta_{0} + \beta_{1}\,gcraven_{ij} + \beta_{2}\,social_{ij} + \beta_{3}(gcraven_{ij}\times social_{ij})\\
&~~~ + \beta_{4}\,mraven_i + \beta_{5}\,(gcraven_{ij} \times mraven_{i})\\
&~~~ + \upsilon_{0i} + \upsilon_{1i}\,gcraven_{ij} + \varepsilon_{ij}
\end{align*}
$$ with
$\boldsymbol\upsilon \sim N(\boldsymbol 0, \boldsymbol{\Sigma}_\upsilon)$
i.i.d., $\varepsilon_{ij} \sim N(0, \sigma^2)$ i.i.d.
5. Interpret the parameters of the model:
- How much does math score increases if the raven score for a
student increases by one point for the reference social class of
the father?
- How much does math score increases when the raven score per school
increases by one point for the reference social class of the
father?
- What is your conclusion about the interactions in the model. Are
they needed?
- Does the inclusion of `social` improve the model fit? How can we
test this?

Binary file not shown.

After

Width:  |  Height:  |  Size: 7.2 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 30 KiB

Binary file not shown.

View File

@ -78,7 +78,9 @@
\item I will explain the general concepts with the slides
\item We will switch to R and use the lme4 package to fit the models
\item You will use R to fit an extension of the model
\item We will discuss the results\\~\\
\item We will discuss the results
\item All the materials are here: \url{https://gitea.iwm-tuebingen.de/nwickelmaier/lead_lmm}
\\~\\
\item[$\to$] Try to go along in R! Ask as many questions as possible, also
the ones you usually do not dare to ask (because you are supposed to know
them already or something\dots)
@ -162,7 +164,7 @@
\begin{column}{.6\textwidth}
Model equation
\begin{align*}
\text{(Level 1)} \quad y_{ij} &= b_{0i} + \varepsilon_{ij}\\
\text{(Level 1)} ~\quad y_{ij} &= b_{0i} + \varepsilon_{ij}\\
\text{(Level 2)} \quad b_{0i} &= \beta_0 + \upsilon_{0i}\\
\text{(2) in (1)} \quad y_{ij} &= \beta_0 + \upsilon_{0i} + \varepsilon_{ij}
\end{align*}
@ -236,7 +238,7 @@
\end{frame}
\begin{frame}{Regression with random school effects}
\begin{frame}{Adding socioeconomic status as a predictor}
\begin{itemize}
\item How strong is the relationship between students' socioeconomic status
and their math achievement on average?
@ -267,7 +269,7 @@
\begin{column}{.6\textwidth}
Model equation
\begin{align*}
\text{(Level 1)} \quad y_{ij} &= b_{0i} + b_{1i}\,x_{ij} + \varepsilon_{ij}\\
\text{(Level 1)} ~\quad y_{ij} &= b_{0i} + b_{1i}\,x_{ij} + \varepsilon_{ij}\\
\text{(Level 2)} \quad b_{0i} &= \beta_0 + \upsilon_{0i}\\
\quad b_{1i} &= \beta_1\\
\text{(2) in (1)} \quad y_{ij} &= \beta_0 + \beta_1\,x_{ij} +
@ -322,7 +324,7 @@
\end{itemize}\pause
\item How can we interpret the random slopes for this model?\pause
\item How do we add random slopes to a random intercept model using
\texttt{lme4::lmer()}?
\texttt{lme4::lmer()}?\pause
\item Fit a model with random slopes for socioeconomic status in R
\end{itemize}
\end{block}
@ -381,12 +383,12 @@
\begin{frame}{Hierarchical regression model}
Model equation
\begin{align*}
\text{(Level 1)} \quad y_{ij} =&~b_{0i} + b_{1i}\,cses_{ij} + \varepsilon_{ij}\\
\text{(Level 1)} ~\quad y_{ij} =&~b_{0i} + b_{1i}\,cses_{ij} + \varepsilon_{ij}\\
\text{(Level 2)} \quad b_{0i} =&~\beta_0 + \beta_2 meanses_i + \beta_4 sector_i + \upsilon_{0i}\\
\quad b_{1i} =&~\beta_1 + \beta_3 meanses_i + \beta_5 sector_i + \upsilon_{1i}\\
\text{(2) in (1)} \quad y_{ij} =&~\beta_0 + \beta_1\,cses_{ij} + \beta_2 meanses_i + \beta_4 sector_i\\
& + \beta_3 (cses_{ij} \times meanses_i) + \beta_5 (cses_{ij} \times sector_i) \\
& + \upsilon_{0i} + cses_{ij}\upsilon_{1i} + \varepsilon_{ij}
& + \upsilon_{0i} + \upsilon_{1i}cses_{ij} + \varepsilon_{ij}
\end{align*}
with
\begin{align*}
@ -424,7 +426,7 @@ with
\item Compute the model in R using \texttt{lme4::lmer()}
{\scriptsize
\begin{align*}
\text{(Level 1)} \quad y_{ij} =&~b_{0i} + b_{1i}\,cses_{ij} + \varepsilon_{ij}\\
\text{(Level 1)} ~\quad y_{ij} =&~b_{0i} + b_{1i}\,cses_{ij} + \varepsilon_{ij}\\
\text{(Level 2)} \quad b_{0i} =&~\beta_0 + \beta_2 meanses_i + \beta_4 sector_i + \upsilon_{0i}\\
\quad b_{1i} =&~\beta_1 + \beta_3 meanses_i + \beta_5 sector_i + \upsilon_{1i}\\
\text{(2) in (1)} \quad y_{ij} =&~\beta_0 + \beta_1\,cses_{ij} + \beta_2 meanses_i + \beta_4 sector_i