diff --git a/slides/lead_lmm.pdf b/slides/lead_lmm.pdf index 3ae2517..130dd78 100644 Binary files a/slides/lead_lmm.pdf and b/slides/lead_lmm.pdf differ diff --git a/slides/lead_lmm.tex b/slides/lead_lmm.tex index d4c96f9..38857ab 100644 --- a/slides/lead_lmm.tex +++ b/slides/lead_lmm.tex @@ -365,6 +365,15 @@ \section{Hierarchical modeling} \begin{frame}{HSB data set} + \begin{itemize} + \item Two levels + \begin{itemize} + \item Level 1: Student attributes + \item Level 2: School attributes + \end{itemize} + \end{itemize} + \vfill + \centering \begin{tabular}{llp{10cm}} \hline @@ -474,8 +483,8 @@ $ \begin{frame}{Results} {Random effects} \begin{itemize}[<+->] - \item The estimate $\hat\sigma^2_{\upsilon_0} = 2.32$ of the variance of - mean school performance provides room for improving prediction by + \item The (ML) estimate $\hat\sigma^2_{\upsilon_0} = 2.32$ of the variance + of mean school performance provides room for improving prediction by including additional predictors \item However, there is virtually no variation in the dependence of math achievement on \texttt{cses} across schools ($\hat\sigma^2_{\upsilon_1} =