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Introduction Hierarchical modeling

Plan for today

• We will walk through an example for a hierarchical data set (students in schools)

• I will explain the general concepts with the slides

• We will switch to R and use the lme4 package to fit the models

• You will use R to fit an extension of the model

• We will discuss the results

• All the materials are here:
https://gitea.iwm-tuebingen.de/nwickelmaier/lead lmm

→ Try to go along in R! Ask as many questions as possible, also the ones you usually
do not dare to ask (because you are supposed to know them already or
something. . . )
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Outline

1 Introduction to random effects

2 Hierarchical modeling
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Introduction Hierarchical modeling

Hierarchical data

• Observations often do not come from a simple random sample, but result from a
hierarchical structure

• Individuals are organized in groups (e.g., students nested in classes, or schools)
• Persons are observed multiple times (observations nested in persons, longitudinal

data)

• Statistical models for this kind of data are called multilevel models, mixed-effects
models, random-effects models, covariance components models, or hierarchical
models

5
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Introduction Hierarchical modeling

Example: Mathematics achievement study

• The hsbdataset.txt file contains data from the National Center for Education
Statistics’ (NCES) “High School & Beyond” national survey of U.S. public and
Catholic high schools (Raudenbush & Bryk, 2002)

• The data set consists of information on 7,185 students from 160 schools on
student performance on a mathematics test and information concerning their
socioeconomic status

• Hierarchical data structure
• Students are organized in schools

yij mathematics achievement of student j in school i
xij (relative) socioeconomic status of student j

in school i (overall mean 0, centered)
• Two levels

• Level 1: Student attributes
• Level 2: School attributes
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Introduction Hierarchical modeling

Regression with random school effects

• What is the mean math achievement of the students?

• How much do schools vary in mean math achievement?

socioeconomic status x

m
at
h
p
er
fo
rm

an
ce

y

β0

υ0i

εij

Model equation

(Level 1) yij = b0i + εij

(Level 2) b0i = β0 + υ0i

(2) in (1) yij = β0 + υ0i + εij

with υ0i ∼ N(0, σ2
υ) i.i.d, εij ∼ N(0, σ2) i.i.d,

υ0i and εij independent
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Introduction Hierarchical modeling

Null model with random intercepts
Subset of 9 schools

socioeconomic status
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Introduction Hierarchical modeling

Random effects

• The problem of grouping observations in schools and the thereby induced
dependencies is solved by introducing school effects

• For many schools this calls for (too) many parameters

• School effects are therefore modeled as random effects (random variables) υ0i
• Only their variance σ2

υ has to be estimated in the model

• The total variance of yij is decomposed into the variance between schools σ2
υ and

within schools σ2

9
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Introduction Hierarchical modeling

Results

• The above posed research questions can be answered based on the parameter
estimates β̂0, σ̂

2
υ and σ̂2

• The estimated mean math achievement of students is β̂0

• The estimated variance of schools in mean math achievement is σ̂2
υ

• The proportion of the total variance accounted for by the variance between schools is

ICC =
σ2
υ

σ2
υ + σ2

(Intra-class correlation)
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Introduction Hierarchical modeling

Adding socioeconomic status as a predictor

• How strong is the relationship between students’ socioeconomic status and their
math achievement on average?

• How much do schools vary in mean math achievement for students with average
socioeconomic status?

socioeconomic status x

m
at
h
p
er
fo
rm

an
ce

y

β0

υ0i

εij

β1

Model equation

(Level 1) yij = b0i + b1i xij + εij

(Level 2) b0i = β0 + υ0i

b1i = β1

(2) in (1) yij = β0 + β1 xij + υ0i + εij

with υ0i ∼ N(0, σ2
υ) i.i.d, εij ∼ N(0, σ2) i.i.d,

υ0i and εij independent
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Introduction Hierarchical modeling

Model with covariate and random intercepts
Subset of 9 schools

socioeconomic status
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Introduction Hierarchical modeling

Exercise

• What would be the next possible extension of this model?

• Write down the model equations
• What changes for the fixed effects?
• How do the variance components for the random effects change?

• How can we interpret the random slopes for this model?

• How do we add random slopes to a random intercept model using lme4::lmer()?

• Fit a model with random slopes for socioeconomic status in R

13
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Introduction Hierarchical modeling

Model with covariate and random slopes
Subset of 9 schools
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Introduction Hierarchical modeling

2 Hierarchical modeling
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Introduction Hierarchical modeling

HSB data set

Level Variable Description

1 mathach Performance in mathematics test
1 ses (relative) socioeconomic status (overall mean 0)
2 meanses mean socioeconomic status of the school (overall mean 0)
1 cses Centered socioeconomic status of the student (mean for each

school 0, difference ses - meanses)
2 school school ID
2 sector Public (0) or Catholic High School (1)
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Introduction Hierarchical modeling

Hierarchical regression model
Model equation

(Level 1) yij = b0i + b1i csesij + εij

(Level 2) b0i = β0 + β2meansesi + β4sectori + υ0i

b1i = β1 + β3meansesi + β5sectori + υ1i

(2) in (1) yij = β0 + β1 csesij + β2meansesi + β4sectori

+ β3(csesij ×meansesi ) + β5(csesij × sectori )

+ υ0i + υ1icsesij + εij

with (
υ0i
υ1i

)
∼ N

((
0
0

)
, Συ =

(
σ2
υ0 συ0υ1

συ0υ1 σ2
υ1

))
i.i.d

εi ∼ N(0, σ2Ini ) i.i.d

17



Introduction Hierarchical modeling

Decomposing socioeconomic status

• In this model, by decomposing the socioeconomic status according to the equation

ses = cses +meanses

its differential effectiveness is considered at each of the levels

• At the same time, the effect of the type of school is examined via the variable
sector

• Notice that the formulation of the model assumes dependencies of the slope b1i
on both mean socioeconomic status and school type, which is captured by the
interactions of cses with meanses and sector, respectively

18
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Introduction Hierarchical modeling

Exercise

1. Compute the model in R using lme4::lmer()

(Level 1) yij = b0i + b1i csesij + εij

(Level 2) b0i = β0 + β2meansesi + β4sectori + υ0i

b1i = β1 + β3meansesi + β5sectori + υ1i

(2) in (1) yij = β0 + β1 csesij + β2meansesi + β4sectori + β3(csesij ×meansesi ) + β5(csesij × sectori )

+ υ0i + csesijυ1i + εij

with

(
υ0i
υ1i

)
∼ N

((
0
0

)
, Συ =

(
σ2
υ0

συ0υ1

συ0υ1 σ2
υ1

))
i.i.d, εi ∼ N(0, σ2Ini ) i.i.d

2. Interpret the parameters

19



Introduction Hierarchical modeling

Results
Fixed effects

• Mean math achievement (i.e., for a student with a mean cses score in a school
with a mean meanses score) is 12.11 in Public High Schools and 13.33 in
Catholic High Schools

• Effects of socioeconomic status at the two levels

• The effect at the student level depends on the type of school: math achievement
increases by 2.94 points in Public High Schools and by 2.94− 1.64 = 1.30 points in
Catholic High Schools for a unit increase in cses

• Higher math achievements are obtained in schools with higher mean socioeconomic
status

• In addition, the dependence of math achievement on cses scores is more
pronounced in schools with higher meanses scores (estimated interaction > 0)

20
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Introduction Hierarchical modeling

Results
Random effects

• The estimate σ̂2
υ0 = 2.32 of the variance of mean school performance provides

room for improving prediction by including additional predictors

• However, there is virtually no variation in the dependence of math achievement on
cses across schools (σ̂2

υ1 = 0.07), which should also be noted when interpreting
the reported correlation of 0.48

• The corresponding covariance has an estimated value of
σ̂υ0υ1 = 0.48 · σ̂υ0 · σ̂υ1 = 0.19

• These results suggest a simplified model of the dependence of math achievement
on cses, where the intercept, but not the slope varies across schools

21
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Introduction Hierarchical modeling

Summary

• Regression models with fixed and random effects

• allow for adequately modeling hierarchical data structures
• longitudinal data
• individuals organized in groups (e.g., students in classes, or schools)

• allow for adequately modeling the sources of error occurring in this context
• offer an optimal trade-off between individual and aggregate data analysis

• while individual differences are modeled, information aggregated over the sample is
exploited, too

• Therefore, linear mixed-effects models allow for integrating differential and general
psychological aspects within a common theoretical framework
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Introduction Hierarchical modeling

What we learned today. . .
. . . and how to go on

1. We learned

• The basic concept of random effects and why to include them in a model
• How to compute a linear mixed-effects model in R using lmer() from the lme4

package
• How to use a hierarchical model to separate individual and school differences
• How to interpret parameters in a linear mixed-effects model

2. Next steps

• Do this exercise https://gitea.iwm-tuebingen.de/nwickelmaier/lead lmm/src/
branch/master/exercises/jsp.md using the JSP data set in R

• It has a very similar structure than the HSB data set and this will help you to
generalize the concepts we learned today

• You can send questions to me and even make an appointment with me to go over
your solution
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