216 lines
6.1 KiB
Python
216 lines
6.1 KiB
Python
# -*- coding: utf-8 -*-
|
|
# -------------------------------------------------------------------------
|
|
# REQUIREMENTS
|
|
#
|
|
# module srt
|
|
# module vosk
|
|
# language model
|
|
#
|
|
# INSTALL
|
|
#
|
|
# cd /usr/lib/
|
|
# apt install ffmpeg
|
|
# git clone --recursive https://github.com/web2py/web2py.git
|
|
# cd web2py
|
|
# cd web2py/applications/transcription
|
|
# pip3 install -t modules srt
|
|
# pip3 install -t modules vosk
|
|
# pip3 install -t modules webvtt-py
|
|
# cd private
|
|
# wget https://alphacephei.com/vosk/models/vosk-model-de-0.21.zip
|
|
# unzip vosk-model-de-0.21.zip
|
|
# -------------------------------------------------------------------------
|
|
|
|
import io
|
|
from vosk import KaldiRecognizer
|
|
from webvtt import WebVTT, Caption
|
|
import subprocess
|
|
import srt
|
|
import json
|
|
import datetime
|
|
import textwrap
|
|
import transcription_tools
|
|
# transcription_tools = local_import('transcription_tools', reload=True)
|
|
|
|
# To let Eclipse know about predefined objects
|
|
global db
|
|
global request
|
|
global session
|
|
global reqponse
|
|
global SQLFORM
|
|
global redirect
|
|
global auth
|
|
global URL
|
|
global response
|
|
|
|
|
|
model_mod_path = 'private/model'
|
|
|
|
|
|
def index():
|
|
media_files = db().select(db.media_file.ALL, orderby=db.media_file.title)
|
|
return dict(media_files=media_files)
|
|
|
|
|
|
@auth.requires_membership('manager')
|
|
def manage():
|
|
grid = SQLFORM.smartgrid(db.media_file, linked_tables=['post'])
|
|
return dict(grid=grid)
|
|
|
|
|
|
def webvtt_single_line():
|
|
# Get mediafile from request
|
|
media_file = (db.media_file(request.args(0, cast=int)) or
|
|
redirect(URL('index')))
|
|
# Set vars
|
|
media_path = '{}/{}/{}'.format(request.folder, 'uploads', media_file.file)
|
|
model_path = '{}/{}'.format(request.folder, model_mod_path)
|
|
|
|
# Trascribe to SubRip Subtitle file SRT
|
|
sample_rate = 16000
|
|
model = transcription_tools.get_model(model_path)
|
|
rec = KaldiRecognizer(model, sample_rate)
|
|
rec.SetWords(True)
|
|
|
|
# 16bit mono with ffmpeg
|
|
process = subprocess.Popen(
|
|
['ffmpeg', '-loglevel', 'quiet', '-i', media_path, '-ar',
|
|
str(sample_rate), '-ac', '1', '-f', 's16le', '-'],
|
|
stdout=subprocess.PIPE
|
|
)
|
|
|
|
WORDS_PER_LINE = 7
|
|
|
|
def transcribe():
|
|
results = []
|
|
subs = []
|
|
while True:
|
|
data = process.stdout.read(4000)
|
|
if len(data) == 0:
|
|
break
|
|
if rec.AcceptWaveform(data):
|
|
results.append(rec.Result())
|
|
results.append(rec.FinalResult())
|
|
|
|
for i, res in enumerate(results):
|
|
jres = json.loads(res)
|
|
if not 'result' in jres:
|
|
continue
|
|
words = jres['result']
|
|
for j in range(0, len(words), WORDS_PER_LINE):
|
|
line = words[j: j + WORDS_PER_LINE]
|
|
s = srt.Subtitle(
|
|
index=len(subs),
|
|
content=" ".join([l['word'] for l in line]),
|
|
start=datetime.timedelta(seconds=line[0]['start']),
|
|
end=datetime.timedelta(seconds=line[-1]['end'])
|
|
)
|
|
subs.append(s)
|
|
return subs
|
|
|
|
srt_str = srt.compose(transcribe()) # create srt string
|
|
|
|
# Create single line webvtt from srt with ffmepg
|
|
process1 = subprocess.Popen(
|
|
['ffmpeg', '-loglevel', 'quiet', '-i', '-', '-f', 'webvtt', '-'],
|
|
stdin=subprocess.PIPE, stdout=subprocess.PIPE
|
|
)
|
|
# Send srt_str as input file to ffmpeg process
|
|
webvtt = process1.communicate(input=bytes(srt_str, 'utf-8'))[0]
|
|
|
|
# Add result to database
|
|
db(db.media_file.id == media_file.id).update(vtt_single_line=webvtt)
|
|
redirect(request.env.http_referer)
|
|
|
|
|
|
def webvtt():
|
|
# Get mediafile from request
|
|
media_file = (db.media_file(request.args(0, cast=int)) or
|
|
redirect(URL('index')))
|
|
# Set vars
|
|
media_path = '{}/{}/{}'.format(request.folder, 'uploads', media_file.file)
|
|
model_path = '{}/{}'.format(request.folder, model_mod_path)
|
|
|
|
# Transcribe
|
|
sample_rate = 16000
|
|
model = transcription_tools.get_model(model_path) # cached model
|
|
rec = KaldiRecognizer(model, sample_rate)
|
|
rec.SetWords(True)
|
|
|
|
def timeString(seconds):
|
|
minutes = seconds / 60
|
|
seconds = seconds % 60
|
|
hours = int(minutes / 60)
|
|
minutes = int(minutes % 60)
|
|
return '%i:%02i:%06.3f' % (hours, minutes, seconds)
|
|
|
|
def transcribe():
|
|
command = ['ffmpeg', '-nostdin', '-loglevel', 'quiet', '-i',
|
|
media_path, '-ar', str(sample_rate), '-ac', '1', '-f',
|
|
's16le', '-']
|
|
process = subprocess.Popen(command, stdout=subprocess.PIPE)
|
|
|
|
results = []
|
|
while True:
|
|
data = process.stdout.read(4000)
|
|
if len(data) == 0:
|
|
break
|
|
if rec.AcceptWaveform(data):
|
|
results.append(rec.Result())
|
|
results.append(rec.FinalResult())
|
|
|
|
vtt = WebVTT()
|
|
for i, res in enumerate(results):
|
|
words = json.loads(res).get('result')
|
|
if not words:
|
|
continue
|
|
|
|
start = timeString(words[0]['start'])
|
|
end = timeString(words[-1]['end'])
|
|
content = ' '.join([w['word'] for w in words])
|
|
|
|
caption = Caption(start, end, textwrap.fill(content))
|
|
vtt.captions.append(caption)
|
|
|
|
return(vtt.content)
|
|
|
|
# Write result to database
|
|
db(db.media_file.id == media_file.id).update(vtt=transcribe())
|
|
redirect(request.env.http_referer)
|
|
|
|
|
|
def download_webvtt_single_line():
|
|
|
|
media_file = (db.media_file(request.args(0, cast=int)) or
|
|
redirect(URL('index')))
|
|
|
|
webvtt = media_file.vtt_single_line
|
|
|
|
response.headers['Content-Type'] = 'text/vtt'
|
|
response.headers['Content-Disposition'] = ('attachment; '
|
|
'filename=transcript.vtt')
|
|
|
|
f = io.StringIO(webvtt)
|
|
|
|
return(f)
|
|
|
|
|
|
def download_webvtt():
|
|
|
|
media_file = (db.media_file(request.args(0, cast=int)) or
|
|
redirect(URL('index')))
|
|
|
|
webvtt = media_file.vtt
|
|
|
|
response.headers['Content-Type'] = 'text/vtt'
|
|
response.headers['Content-Disposition'] = ('attachment; '
|
|
'filename=transcript.vtt')
|
|
|
|
f = io.StringIO(webvtt)
|
|
|
|
return(f)
|
|
|
|
|
|
def user():
|
|
return dict(form=auth())
|