# -*- coding: utf-8 -*- # ------------------------------------------------------------------------- # REQUIREMENTS # # module srt # module vosk # language model # # INSTALL # # apt install ffmpeg # apt install python3-pip # pip3 install --upgrade pip # cd /usr/lib/ # git clone --recursive https://github.com/web2py/web2py.git # cd web2py/applications # mkdir transcription # cd transcription # git clone https://gitea.iwm-tuebingen.de/mschmidt/web2py.transcription.git . # pip3 install -t modules srt # pip3 install -t modules vosk # pip3 install -t modules webvtt-py # cd private # wget https://alphacephei.com/vosk/models/vosk-model-de-0.21.zip # unzip vosk-model-de-0.21.zip # ------------------------------------------------------------------------- import io from vosk import KaldiRecognizer from webvtt import WebVTT, Caption import subprocess import srt import json import datetime import textwrap import transcription_tools # transcription_tools = local_import('transcription_tools', reload=True) # To let Eclipse know about predefined objects global db global request global session global reqponse global SQLFORM global redirect global auth global URL global response model_mod_path = 'private/model' def index(): media_files = db().select(db.media_file.ALL, orderby=db.media_file.title) return dict(media_files=media_files) @auth.requires_membership('manager') def manage(): grid = SQLFORM.smartgrid(db.media_file, linked_tables=['post']) return dict(grid=grid) def webvtt_single_line(): # Get mediafile from request media_file = (db.media_file(request.args(0, cast=int)) or redirect(URL('index'))) # Set vars media_path = '{}/{}/{}'.format(request.folder, 'uploads', media_file.file) model_path = '{}/{}'.format(request.folder, model_mod_path) # Trascribe to SubRip Subtitle file SRT sample_rate = 16000 model = transcription_tools.get_model(model_path) rec = KaldiRecognizer(model, sample_rate) rec.SetWords(True) # 16bit mono with ffmpeg process = subprocess.Popen( ['ffmpeg', '-loglevel', 'quiet', '-i', media_path, '-ar', str(sample_rate), '-ac', '1', '-f', 's16le', '-'], stdout=subprocess.PIPE ) WORDS_PER_LINE = 7 def transcribe(): results = [] subs = [] while True: data = process.stdout.read(4000) if len(data) == 0: break if rec.AcceptWaveform(data): results.append(rec.Result()) results.append(rec.FinalResult()) for i, res in enumerate(results): jres = json.loads(res) if not 'result' in jres: continue words = jres['result'] for j in range(0, len(words), WORDS_PER_LINE): line = words[j: j + WORDS_PER_LINE] s = srt.Subtitle( index=len(subs), content=" ".join([l['word'] for l in line]), start=datetime.timedelta(seconds=line[0]['start']), end=datetime.timedelta(seconds=line[-1]['end']) ) subs.append(s) return subs srt_str = srt.compose(transcribe()) # create srt string # Create single line webvtt from srt with ffmepg process1 = subprocess.Popen( ['ffmpeg', '-loglevel', 'quiet', '-i', '-', '-f', 'webvtt', '-'], stdin=subprocess.PIPE, stdout=subprocess.PIPE ) # Send srt_str as input file to ffmpeg process webvtt = process1.communicate(input=bytes(srt_str, 'utf-8'))[0] # Add result to database db(db.media_file.id == media_file.id).update(vtt_single_line=webvtt) redirect(request.env.http_referer) def webvtt(): # Get mediafile from request media_file = (db.media_file(request.args(0, cast=int)) or redirect(URL('index'))) # Set vars media_path = '{}/{}/{}'.format(request.folder, 'uploads', media_file.file) model_path = '{}/{}'.format(request.folder, model_mod_path) # Transcribe sample_rate = 16000 model = transcription_tools.get_model(model_path) # cached model rec = KaldiRecognizer(model, sample_rate) rec.SetWords(True) def timeString(seconds): minutes = seconds / 60 seconds = seconds % 60 hours = int(minutes / 60) minutes = int(minutes % 60) return '%i:%02i:%06.3f' % (hours, minutes, seconds) def transcribe(): command = ['ffmpeg', '-nostdin', '-loglevel', 'quiet', '-i', media_path, '-ar', str(sample_rate), '-ac', '1', '-f', 's16le', '-'] process = subprocess.Popen(command, stdout=subprocess.PIPE) results = [] while True: data = process.stdout.read(4000) if len(data) == 0: break if rec.AcceptWaveform(data): results.append(rec.Result()) results.append(rec.FinalResult()) vtt = WebVTT() for i, res in enumerate(results): words = json.loads(res).get('result') if not words: continue start = timeString(words[0]['start']) end = timeString(words[-1]['end']) content = ' '.join([w['word'] for w in words]) caption = Caption(start, end, textwrap.fill(content)) vtt.captions.append(caption) return(vtt.content) # Write result to database db(db.media_file.id == media_file.id).update(vtt=transcribe()) redirect(request.env.http_referer) def download_webvtt_single_line(): media_file = (db.media_file(request.args(0, cast=int)) or redirect(URL('index'))) webvtt = media_file.vtt_single_line response.headers['Content-Type'] = 'text/vtt' response.headers['Content-Disposition'] = ('attachment; ' 'filename=transcript.vtt') f = io.StringIO(webvtt) return(f) def download_webvtt(): media_file = (db.media_file(request.args(0, cast=int)) or redirect(URL('index'))) webvtt = media_file.vtt response.headers['Content-Type'] = 'text/vtt' response.headers['Content-Disposition'] = ('attachment; ' 'filename=transcript.vtt') f = io.StringIO(webvtt) return(f) def user(): return dict(form=auth())