# REQUIREMENTS # # module srt # module vosk # language model # # INSTALL # # cd web2py/applications/transcription # pip3 install -t modules srt # pip3 install -t modules vosk # cd private # wget https://alphacephei.com/vosk/models/vosk-model-de-0.21.zip # unzip vosk-model-de-0.21.zip from vosk import Model, KaldiRecognizer, SetLogLevel from webvtt import WebVTT, Caption import sys import os import wave import subprocess import srt import json import datetime import textwrap def vtt_single_line(model_path, media_path): sample_rate = 16000 model = Model(model_path) rec = KaldiRecognizer(model, sample_rate) rec.SetWords(True) # 16bit mono with ffmpeg process = subprocess.Popen(['ffmpeg', '-loglevel', 'quiet', '-i', media_path, '-ar', str(sample_rate), '-ac', '1', '-f', 's16le', '-'], stdout=subprocess.PIPE) WORDS_PER_LINE = 7 def transcribe(): results = [] subs = [] while True: data = process.stdout.read(4000) if len(data) == 0: break if rec.AcceptWaveform(data): results.append(rec.Result()) results.append(rec.FinalResult()) for i, res in enumerate(results): jres = json.loads(res) if not 'result' in jres: continue words = jres['result'] for j in range(0, len(words), WORDS_PER_LINE): line = words[j: j + WORDS_PER_LINE] s = srt.Subtitle( index=len(subs), content=" ".join([l['word'] for l in line]), start=datetime.timedelta(seconds=line[0]['start']), end=datetime.timedelta(seconds=line[-1]['end']) ) subs.append(s) return subs srt_str = srt.compose(transcribe()) # create srt string # webvtt from srt with ffmepg process1 = subprocess.Popen( ['ffmpeg', '-loglevel', 'quiet', '-i', '-', '-f', 'webvtt', '-'], stdin=subprocess.PIPE, stdout=subprocess.PIPE ) webvtt = process1.communicate(input=bytes(srt_str, 'utf-8'))[0] return (webvtt) def vtt(model_path, media_path): sample_rate = 16000 model = Model(model_path) rec = KaldiRecognizer(model, sample_rate) rec.SetWords(True) WORDS_PER_LINE = 7 def timeString(seconds): minutes = seconds / 60 seconds = seconds % 60 hours = int(minutes / 60) minutes = int(minutes % 60) return '%i:%02i:%06.3f' % (hours, minutes, seconds) def transcribe(): command = ['ffmpeg', '-nostdin', '-loglevel', 'quiet', '-i', media_path, '-ar', str(sample_rate), '-ac', '1', '-f', 's16le', '-'] process = subprocess.Popen(command, stdout=subprocess.PIPE) results = [] while True: data = process.stdout.read(4000) if len(data) == 0: break if rec.AcceptWaveform(data): results.append(rec.Result()) results.append(rec.FinalResult()) vtt = WebVTT() for i, res in enumerate(results): words = json.loads(res).get('result') if not words: continue start = timeString(words[0]['start']) end = timeString(words[-1]['end']) content = ' '.join([w['word'] for w in words]) caption = Caption(start, end, textwrap.fill(content)) vtt.captions.append(caption) return(vtt.content) return(transcribe())